Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular sudoku

06.10.2011
A team of scientists from the Catalan Institute of Nanotechnology, ICREA and UAB investigated the properties of a special kind of sudoku, made by assembling tiny molecules into a 3x3 square array

As reported this week in Nature Communications, the researchers used the atomically-sharp tip of a scanning tunneling microscope to move 1-nanometer sized molecules on top of a silver substrate.

The tip is controlled with such great accuracy that it is possible to precisely choose the position of each molecule and build tiny molecular squares, crosses, and chains of controlled size and orientation. The same tip is then used as a mobile electrode to probe the electrical conductivity of the molecules as a function of their position in the array. Figures a-d show an example of such measurements: a represent the topography of a "sudoku" molecular cluster, whereas b-d show regions of high conductivity at different voltages.

At low voltage, electrons prefer to pass through the corner molecules, whereas at high voltage, only the central molecule is conducting. This is so because the conductivity depends strongly on a small set of electronic states, which conduct electricity to the substrate, and these are modified by the presence of side-to-side neighbors.

The molecular conductance was found to vary strongly not only from one molecule to another, but also within each molecule, due to the possibility of exploiting different electron transport channels at different positions. Such conduction channels arise from the excitation of internal degrees of freedom of the molecules, such as atomic vibrations and magnetic coupling of the electronic spins. All together, these results demonstrate the intricacy and beauty of molecular electronics, providing a glimpse of its advantages, such as the fabrication of versatile miniaturized circuits, and challenges, which may prove harder to solve than a sudoku game.

Spin coupling and relaxation inside molecule-metal contacts
Aitor Mugarza1,2*, Cornelius Krull1,2, Roberto Robles2, Sebastian Stepanow1,2, Gustavo Ceballos1,2, Pietro Gambardella1,2,3,4
1 Catalan Institute of Nanotechnology (ICN), UAB Campus, E-08193 Barcelona, Spain
2 Centre d'Investigacions en Nanociència i Nanotecnologia (CIN2), UAB Campus, E-08193 Barcelona, Spain
3 Institució Catalana de Recerca i Estudis Avançats (ICREA)
4 Departament de Física, Universitat Autonoma de Barcelona, E-08193 Barcelona, Spain
DOI: 10.1038/ncomms1497
On-line versión will be published 4 October de 2011 a las 18:00 horas
For further information:
Catalan Institute of Nanotechnology (ICN) www.icn.cat
Contact: Prof. Dr. Pietro Gambardella, pietro.gambardella@icn.cat
Communication Dept.: Ana de la Osa, ana.delaosa.icn@uab.es
Tel: + (34) 93 581 4963

Pietro Gambardella | EurekAlert!
Further information:
http://www.icn.cat

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>