Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular nanoprobe for nanoantenna optical near-fields

29.07.2013
Researchers at the University of Stuttgart measure for the first time near-fields of three-dimensional optical nanoantennas.

Researchers at the University of Stuttgart measured for the first time optical near-field intensities of three-dimensional nanoantennas. The team of Prof. Harald Giessen at the 4th Physics Institute achieved those results with a novel scheme of nanospectroscopy and published their paper in the journal “Nature Communications”.*)


Molecules (blue) are positioned with nanometer accuracy next to three-dimensional optical nanoantennas. Vibrations in the molecules are excited. The oscillation strength depends on the near-field distribution (red) and can be measured in the far-field.

(University of Stuttgart)

Their method gives new insight into light-matter coupling at the nanoscale and allows precise measurement of enhanced optical near-field intensities generated by optical antennas. This technique can facilitate the engineering of future sensing platforms with extremely high sensitivity.

Molecules exhibit vibrational resonances in the mid-infrared and terahertz regions which is called the molecular fingerprint since it is unique for each substance. With far-field spectroscopy techniques, molecules can be detected and unambiguously identified. Nevertheless, huge quantities of molecules are needed since the excitation of the vibrational resonances is very inefficient. Metallic optical nanoantennas are resonant to incident radiation and generate high near-fields in their direct vicinity. These intensive fields can be used to make small amounts of molecules or even single molecules visible. This plays an important role in early disease diagnostics and in the detection of harmful substances or explosive gas mixtures, such as hydrogen in air.

The Stuttgart group was able to position a few molecules next to gold nanoantennas. Using electron-beam lithography they achieved an accuracy as small as a few nanometers. Due to the high near-field intensities the excitation of the molecular vibrations was orders of magnitude more efficient and was measurable with far-field spectroscopy techniques. By positioning the molecules at different locations with respect to the optical gold nanoantenna the underlying physical process of the vibrational excitation was identified for the first time. In particular, the team of researchers found that the efficiency of the vibrational excitation scales linearly with the near-field intensity generated by the optical antennas.

With this insight the researchers developed a new method to measure quantitatively near-field intensities of optical nanoantennas. The resolution limit of conventional microscopy was overcome since the detection volume using the molecules was much smaller than the wavelength cubed. Compared to state-of-the-art optical near-field microscopy, the method of the Stuttgart group exhibits the unique advantage of measuring near-field distributions of three-dimensional nanoantenna structures. Daniel Dregely was able to incorporate molecules at specific locations during the fabrication process of the antenna structure. He could then detect the vibrational excitation and thus measure the near-field intensity. Such complex nanostructures add another degree of freedom to enhance the interaction of light with single molecules at the nanoscale. The design of future sensing devices will benefit from this new tool of assessing near-field intensities of three-dimensional optical antennas.

*) Reference: D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures”, Nature Communications (2013). http://www.nature.com/naturecommunications

Contact:
Prof. Harald Giessen, University of Stuttgart, 4th Physics Institute,
Tel. +49 711 68565111, e-mail: giessen (at) physik.uni-stuttgart.de
or
Dipl.-Phys. Daniel Dregely, University of Stuttgart, 4th Physics Institute, Tel. +49 711 68564961, e-mail: d.dregely (at) physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de
http://www.nature.com/naturecommunications

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>