Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular magnets swirl together

20.10.2014

Efficient transfer of information with organic molecules and skyrmions

On the quest for novel solutions for future information technology, scientists from the University of Hamburg and the Forschungszentrum Jülich managed to couple molecular magnets through a lattice of magnetic skyrmions – a whirl in the magnetization of special materials – and to transfer digital infor-mation over large distances. Using the magnetization to store and transfer information outperforms current electronic components due to greatly reduced power consumption while largely enhancing processing speed.


An illustration of molecular magnets embedded in a skyrmion lattice.

J. Brede, research group of Prof. R. Wiesendanger, University of Hamburg

The innovations in information technology are still happening at a tearing pace but in particular in the mobile sector conventional semiconductor technology will reach its limits soon. Therefore the quest for novel and efficient methods to store, transport, and manipulate data at an ultimately small scale is cur-rently a vibrant field of research.

A particularly promising approach is the field of “nano-spintronics”, where the “spin” rather than the charge of the electron is utilized. In a simplified picture the spin of the electron can be understood as the rotation of the electron about its axis. In 2011, physicists from Hamburg University demonstrated a spintronic-logic gate built up of individual magnetic atoms and nano-islands. However, a severe limitation of the realized logic gate was the operating temperature close to absolute zero (-273°C).

Consequently, a way to realize more stable structures capable of operation at higher temperatures was searched for. A promising template was the magnetic skyrmion lattice which was discovered in Hamburg in 2011. The magnetic skyrmions can be pictured as whirls in a “sea” of atomic magnets; the skyrmion magnetization “swirls” by 360° from the edge to the center.

The blessing of the skyrmion lattice – its inherent stability against external perturbations – is also its curse, how to utilize such a robust structure for information processing?

To overcome this obstacle the scientists deposited cost-efficient and readily prepared organic molecules on an iron film of one atomic layer thickness on an iridium substrate. The molecules bond the underlying iron atoms together to form well-defined molecular magnets which are embedded within the skyrmion lattice.

In the figure shown below, the digital information contained within the molecular magnets – the magnetization points either up (red=1) or down (green=0) - is visualized and another advantage of the fabrication method becomes apparent: it is possible to tailor magnets by choosing the appropriate size of the organic molecule, i.e. “larger” molecules make stronger magnets.

While the approach to employ cost-efficient molecules to create tailored magnets holds promise for ap-plication in data storage in itself it is another observation that fascinated the physicists in particular. The scientists noticed that the molecular magnets could be coupled through the skyrmion lattice: When one of the molecular magnets was flipped by applying an external magnetic field, another molecular magnet, situated several nanometers away, flipped as well, the information “swirling” through the skyrmion lat-tice.

Utilizing this method information can be transferred over long distances save, fast, and energy-efficient since there is no need for a flow of electrons. Extending this approach further and coupling multiple mo-lecular magnets in appropriate ways, more complex structures such as ultra-small logic-gates can be envi-sioned.

Another benefit of using the magnetization for computation is the non-volatile nature of the in-formation which becomes clear after restarting a device: it is possible to continue right where one left off. The long and tedious process of booting the electronic device becomes obsolete.

Original publication:

Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice
J. Brede, N. Atodiresei, V. Caciuc, M. Bazarnik, A. Al-Zubi, S. Blügel, and R. Wiesendanger,
Nature Nanotechology (2014) .
DOI: 10.1038/nnano.2014.235

Additional Information:
Prof. Dr. Roland Wiesendanger
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 11a, 20355 Hamburg
Tel.: (0 40) 4 28 38 - 52 44
Fax: (0 40) 4 28 38 - 24 09
E-Mail: wiesendanger@physnet.uni-hamburg.de

Weitere Informationen:

http://www.sfb668.de
http://www.nanoscience.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>