Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular magnets swirl together

20.10.2014

Efficient transfer of information with organic molecules and skyrmions

On the quest for novel solutions for future information technology, scientists from the University of Hamburg and the Forschungszentrum Jülich managed to couple molecular magnets through a lattice of magnetic skyrmions – a whirl in the magnetization of special materials – and to transfer digital infor-mation over large distances. Using the magnetization to store and transfer information outperforms current electronic components due to greatly reduced power consumption while largely enhancing processing speed.


An illustration of molecular magnets embedded in a skyrmion lattice.

J. Brede, research group of Prof. R. Wiesendanger, University of Hamburg

The innovations in information technology are still happening at a tearing pace but in particular in the mobile sector conventional semiconductor technology will reach its limits soon. Therefore the quest for novel and efficient methods to store, transport, and manipulate data at an ultimately small scale is cur-rently a vibrant field of research.

A particularly promising approach is the field of “nano-spintronics”, where the “spin” rather than the charge of the electron is utilized. In a simplified picture the spin of the electron can be understood as the rotation of the electron about its axis. In 2011, physicists from Hamburg University demonstrated a spintronic-logic gate built up of individual magnetic atoms and nano-islands. However, a severe limitation of the realized logic gate was the operating temperature close to absolute zero (-273°C).

Consequently, a way to realize more stable structures capable of operation at higher temperatures was searched for. A promising template was the magnetic skyrmion lattice which was discovered in Hamburg in 2011. The magnetic skyrmions can be pictured as whirls in a “sea” of atomic magnets; the skyrmion magnetization “swirls” by 360° from the edge to the center.

The blessing of the skyrmion lattice – its inherent stability against external perturbations – is also its curse, how to utilize such a robust structure for information processing?

To overcome this obstacle the scientists deposited cost-efficient and readily prepared organic molecules on an iron film of one atomic layer thickness on an iridium substrate. The molecules bond the underlying iron atoms together to form well-defined molecular magnets which are embedded within the skyrmion lattice.

In the figure shown below, the digital information contained within the molecular magnets – the magnetization points either up (red=1) or down (green=0) - is visualized and another advantage of the fabrication method becomes apparent: it is possible to tailor magnets by choosing the appropriate size of the organic molecule, i.e. “larger” molecules make stronger magnets.

While the approach to employ cost-efficient molecules to create tailored magnets holds promise for ap-plication in data storage in itself it is another observation that fascinated the physicists in particular. The scientists noticed that the molecular magnets could be coupled through the skyrmion lattice: When one of the molecular magnets was flipped by applying an external magnetic field, another molecular magnet, situated several nanometers away, flipped as well, the information “swirling” through the skyrmion lat-tice.

Utilizing this method information can be transferred over long distances save, fast, and energy-efficient since there is no need for a flow of electrons. Extending this approach further and coupling multiple mo-lecular magnets in appropriate ways, more complex structures such as ultra-small logic-gates can be envi-sioned.

Another benefit of using the magnetization for computation is the non-volatile nature of the in-formation which becomes clear after restarting a device: it is possible to continue right where one left off. The long and tedious process of booting the electronic device becomes obsolete.

Original publication:

Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice
J. Brede, N. Atodiresei, V. Caciuc, M. Bazarnik, A. Al-Zubi, S. Blügel, and R. Wiesendanger,
Nature Nanotechology (2014) .
DOI: 10.1038/nnano.2014.235

Additional Information:
Prof. Dr. Roland Wiesendanger
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 11a, 20355 Hamburg
Tel.: (0 40) 4 28 38 - 52 44
Fax: (0 40) 4 28 38 - 24 09
E-Mail: wiesendanger@physnet.uni-hamburg.de

Weitere Informationen:

http://www.sfb668.de
http://www.nanoscience.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>