Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular machines drive plasmonic nanoswitches

13.02.2009
Plasmonics -- a possible replacement for current computing approaches -- may pave the way for the next generation of computers that operate faster and store more information than electronically-based systems and are smaller than optically-based systems, according to a Penn State engineer who has developed a plasmonic switch.

"If plasmonics are realized, the future will have circuits as small as the current electronic ones with a capacity a million times better," said Tony Jun Huang, James Henderson assistant professor of Engineering Science and Mechanics. "Plasmonics combines the speed and capacity of photonic -- light based -- circuits with the small size of electronic circuits."

Currently, electronic circuits can be made very small, but they are limited by their capacity and the speed that information can travel in the circuits. Optical circuits send information at the speed of light, but the size is large, limited by the light's wavelength. Plasmonics combines the best of electronic and optical circuits and can transmit electrons and light at the same time using the surface of the device.

Huang's team created a plasmonic switch from switchable bistable rotaxanes. Rotaxanes are complex molecules that consist of a dumbbell shape with a ring or rings encircling the shaft and are sometimes called molecular machines. The ring can either move from one end of the barbell to the other or rotate around the shaft. Changes in molecular shape are the basis of the plasmonic switch.

Computers, in their simplest form, are machines that can say yes or no multiple times to transfer information. The motion of a molecule can serve the same purpose as the on off switch on a light.

The researchers attached their molecular machines to gold-coated nanodiscs fabricated on glass. The machines were attached with disulfide functional groups. The dumbbell shaped molecules have two areas of the shaft primed with two different chemicals. The ring is initially drawn to circle at one primed area. When the chemical there is oxidized, the ring is repelled and moves to the other primed area, flipping the switch. The process is reversible, so the ring returns to its original state to switch on again later. When the molecule moves, it changes the surface plasmon resonance in that tiny area of the metal where it is attached. This change in resonance is what would send the signal on the circuit. The plasmonic switch that Huang and his team developed is not yet part of a circuit.

"Plasmonic circuits have not yet been achieved," said Huang. "In the past, the plasmonic devices made were all passive." These devices were used as light sources, lenses and waveguides

Huang's switches are activated by a chemical process, however, this is not the optimal choice for a working circuit.

"We believe that the chemically-driven redox process can be replaced with direct electrical or optical stimulation, a logical development that would establish a technological basis for the production of a new class of molecular-machine-based active plasmonic components for solid-state nanophotonic integrated circuits with the potential for low-energy and ultra small operations," the researchers state in a recent issue of Nano Letters.

In essence, plasmonic devices would allow computers to get faster and have more memory storage in smaller spaces. Storage of as much as 1,000 movies on a typical USB drive would be possible. Huang suggests that applications like YouTube, which are very popular but have terrible resolution, could become places to see high-resolution images.

"We are in the very beginning of this field," said Huang. "Creation of a plasmonic circuit is probably five years away."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>