Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular blockade

21.06.2010
Artificial ‘molecules’ with an asymmetric structure can control the flow of electrons in semiconductor materials

Nanoscale devices confine electrons and enable manipulation of electron spin—an inherent property akin to the direction in which the particle is rotating. An unexpected mechanism for this control in asymmetric structures has now been reported by Keiji Ono at the RIKEN Advanced Science Institute, Wako, in collaboration with a team of researchers from Japan and Taiwan.

Artificial systems that trap electrons in a tiny volume can display many of the properties of atoms because they create an analogous series of discrete electron energy levels. “One example is the Zeeman Effect in which an applied magnetic field splits a single electron energy level into two, depending on its spin,” explains Ono.

Taking this analogy further, two closely spaced ‘artificial atoms’ can behave like an artificial molecule. In principle, it is possible to transfer an electron between these atoms by tuning the energy level of an electron in one atom to that of the second by, for example, applying an electric field. Indeed, this phenomenon, known as resonant tunneling, occurs in artificial molecules consisting of two identical atoms. Ono and his team showed, however, that the situation is not so simple in artificial molecules comprising two different atoms.

They investigated a structure that was a stack of alternating layers of semiconductor. Electrons become trapped in the semiconductor with the smaller bandgap by the surrounding layers of wide-bandgap material. The top ‘atom’ was 7.5 nanometers thick and made of indium gallium arsenide. A 6.5-nanometer barrier separated this from the second atom: 10 nanometers of gallium arsenide. Etched pillars with a diameter of less than one micrometer confined the electrons in the transverse direction.

The difference in size and composition meant that the Zeeman Effect was stronger in the top atom than the bottom one. This made it impossible to align both of the Zeeman-split levels in the two atoms at the same time. Ono and colleagues demonstrated that because of this, when an energy state from one atom is aligned with one in the second, the electron flow through the molecule reduces, an effect they call spin blockade. The flow increased when they tuned the two Zeeman levels in one atom to the midpoint of those in the other atom.

“This finding can be used as a basic tool for selecting, filtering, or initializing an individual electron spin,” comments Ono. “I hope this can be applied to quantum information technology.”

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory Single Quantum Dynamics Research Group, RIKEN Advanced Science Institute

Journal information

1. Huang, S.M., Tokura, Y., Akimoto, H., Kono, K., Lin, J.J., Tarucha, S. & Ono, K. Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splitting. Physical Review Letters 104, 136801 (2010)

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>