Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular blockade

21.06.2010
Artificial ‘molecules’ with an asymmetric structure can control the flow of electrons in semiconductor materials

Nanoscale devices confine electrons and enable manipulation of electron spin—an inherent property akin to the direction in which the particle is rotating. An unexpected mechanism for this control in asymmetric structures has now been reported by Keiji Ono at the RIKEN Advanced Science Institute, Wako, in collaboration with a team of researchers from Japan and Taiwan.

Artificial systems that trap electrons in a tiny volume can display many of the properties of atoms because they create an analogous series of discrete electron energy levels. “One example is the Zeeman Effect in which an applied magnetic field splits a single electron energy level into two, depending on its spin,” explains Ono.

Taking this analogy further, two closely spaced ‘artificial atoms’ can behave like an artificial molecule. In principle, it is possible to transfer an electron between these atoms by tuning the energy level of an electron in one atom to that of the second by, for example, applying an electric field. Indeed, this phenomenon, known as resonant tunneling, occurs in artificial molecules consisting of two identical atoms. Ono and his team showed, however, that the situation is not so simple in artificial molecules comprising two different atoms.

They investigated a structure that was a stack of alternating layers of semiconductor. Electrons become trapped in the semiconductor with the smaller bandgap by the surrounding layers of wide-bandgap material. The top ‘atom’ was 7.5 nanometers thick and made of indium gallium arsenide. A 6.5-nanometer barrier separated this from the second atom: 10 nanometers of gallium arsenide. Etched pillars with a diameter of less than one micrometer confined the electrons in the transverse direction.

The difference in size and composition meant that the Zeeman Effect was stronger in the top atom than the bottom one. This made it impossible to align both of the Zeeman-split levels in the two atoms at the same time. Ono and colleagues demonstrated that because of this, when an energy state from one atom is aligned with one in the second, the electron flow through the molecule reduces, an effect they call spin blockade. The flow increased when they tuned the two Zeeman levels in one atom to the midpoint of those in the other atom.

“This finding can be used as a basic tool for selecting, filtering, or initializing an individual electron spin,” comments Ono. “I hope this can be applied to quantum information technology.”

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory Single Quantum Dynamics Research Group, RIKEN Advanced Science Institute

Journal information

1. Huang, S.M., Tokura, Y., Akimoto, H., Kono, K., Lin, J.J., Tarucha, S. & Ono, K. Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splitting. Physical Review Letters 104, 136801 (2010)

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>