Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mössbauer Group of Mainz University is preparing for participation in Japanese Moon mission

13.07.2011
Team led by Göstar Klingelhöfer cooperates with leading researcher of the Japanese space agency JAXA on solar system research projects

The Mössbauer Group at Johannes Gutenberg University Mainz (JGU), Germany, has made a significant contribution towards the exploration of Mars during its long-term cooperation with the US space agency NASA. The Mainz research team led by Dr Göstar Klingelhöfer is now building up new contacts with the aim of cooperating with JAXA, the Japanese space agency.

It is planned to use an innovative spectrometer to determine the chemical composition of lunar material during the next Japanese Moon mission, SELENE-2. In this context Professor Nobuyuki Hasebe of Waseda University in Tokyo has been with the Mössbauer Group as a visiting professor for the past weeks. "Professor Hasebe will be working with me and my team until early August on current and planned projects to explore the solar system, especially Mars and the Moon, but also asteroids," explains Klingelhöfer, head of the Mössbauer Group. Hasebe is one of the leading researchers at the Japanese space agency and has been involved in various space missions.

As an unmanned lunar mission, SELENE-2 was originally planned for a launch in 2012, but it is postponed until 2014, probably. The researchers in Mainz will contribute a newly developed x-ray fluorescence spectrometer, which will be used to analyze in situ the elemental composition of lunar material. The SELENE-2 rover will deploy the spectrometer very close to the surface of a rock or lunar dust that is of interest to the scientists. The novel approach of the x-ray fluorescence spectrometer is the usage of a specially designed x-ray generator instead of a radioactive source. Such radioactive sources are applied by the well-known alpha particle x-ray spectrometer (APXS), also known as "the Mainz snooper." "We are currently in the development phase and are fitting a special x-ray generator to the well-approved and tested APXS used during NASA's last missions on Mars," states Klingelhöfer. The APXS was used on-board of the two Mars rovers, Spirit and Opportunity, and it is in large degree thanks to its chemical analyses that we now know that our neighboring planet once had a warm and humid climate about 4 billion years ago. As was the case with NASA's mission to Mars, Dr Johannes Brückner of the Max Planck Institute of Chemistry is also involved in the SELENE-2 project helping to design the instrument, formulating the research topics, and analyzing the data.

Even before SELENE-2 is ready for take-off, the Mainz researchers will be cooperating with their colleagues in Russia and Japan to have a closer look at the Martian moon Phobos. The question is whether Phobos is an asteroid once captured by Mars or was originally formed from orbiting Martian rocks and dust. This mission is scheduled to start at the end of 2011 and is being equipped with an advanced version of the MIMOS II, a miniature version of the Mössbauer spectrometer. Test runs were carried out about one year ago in Hawaii, where Mars-like materials can be found on the slopes of the Mauna Kea volcano. A field test was jointly carried out there by NASA and CSA, the Canadian Space Agency, to try out instruments for future space missions to Mars and Earth's Moon.

Moreover, the Mars Rover Mission, which started in the summer of 2003, is also still on-going. The rover Opportunity is now in the eighth year of its journey and is moving across the surface of the red planet in the direction of the big Endeavor crater, where it is expected to arrive in late summer or early fall. "Once it arrives there, we will be looking for specific clay minerals containing iron. We have not yet detected these minerals in situ on the Martian surface, but we are hoping to obtain additional data on rocks that make up Mars as well as information on the origin of the red planet," explains Klingelhöfer.

Klingelhöfer and his team, with their expertise in planetology and solar system research, are internationally connected. They are also involved in the "Earth and the Anthropocene" (ERA) Excellence Cluster at Mainz University, which is currently submitting a full application during the second phase of the Federal Excellence Initiative. ERA is based on the cooperation of four internationally renowned research institutions in Mainz: Johannes Gutenberg University Mainz, the Max Planck Institute of Chemistry (MPIC), the Roman-Germanic Central Museum (RGZM), and the Institute for Spatial Information and Surveying Technology (i3mainz) at the Mainz University of Applied Sciences. The ERA researchers are pursuing innovative and high-level interdisciplinary approaches to earth system research by incorporating the cultural sciences into a natural science project.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

Further reports about: Applied Science CHEMISTRY ERA JAXA Japanese Mars Martian Winds Max Planck Institute NASA Phobos

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>