Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT physicists create clouds of impenetrable gases that bounce off each other

14.04.2011
When one cloud of gas meets another, they normally pass right through each other. But now, MIT physicists have created clouds of ultracold gases that bounce off each other like bowling balls, even though they are a million times thinner than air — the first time that such impenetrable gases have been observed.

While this experiment involved clouds of lithium atoms, cooled to near absolute zero, the findings could also help explain the behavior of similar systems such as neutron stars, high-temperature superconductors, and quark-gluon plasma, the hot soup of elementary particles that formed immediately after the Big Bang. A paper describing the work will appear in the April 14 issue of Nature.

The researchers, led by MIT assistant professor of physics Martin Zwierlein, carried out their experiment with an isotope of lithium that belongs to a class of particles called fermions. All building blocks of matter — electrons, protons, neutrons and quarks — are fermions.

Different states of fermionic matter are distinguished by their mobility. For example, electrons can be mobile, as in a metal; immobile, as in an insulator; or flow without resistance, as in a superconductor. However, for many types of material, including high-temperature superconductors, it is not known what circumstances induce fermions to form a given state of matter. This is especially true of materials with strongly interacting fermions, meaning they are more likely to collide with each other (also called scattering).

In this study, the researchers set out to model strongly interacting systems, using lithium gas atoms to stand in for electrons. By tuning the lithium atoms' energy states with a magnetic field, they made the atoms interact with each other as strongly as the laws of nature allow, meaning that they scatter every time they encounter another atom.

To eliminate any effects of heat energy, the researchers cooled the gas to about 50 billionths of one Kelvin, close to absolute zero (-273 degrees Celsius). They used magnetic forces to separate the gas into two clouds, labeled "spin up" and "spin down, then made the clouds collide in a trap formed by laser light. Instead of passing through each other, as gases would normally do, the clouds repelled in dramatic fashion.

"When we saw that these ultra dilute puffs of gas bounce off each other, we were completely amazed," says graduate student Ariel Sommer, lead author of the Nature paper.

The gas clouds did eventually diffuse into each other, but in several cases it took an entire second or more — an extremely long time for events occurring at microscopic scales.

The research, conducted at the MIT-Harvard Center for Ultracold Atoms, is part of a program aimed at using ultracold atoms as easily controllable model systems to study the properties of complex materials, such as high-temperature superconductors and novel magnetic materials that have applications in data storage and improving energy efficiency.

In future work, the researchers plan to confine the lithium gases to two-dimensions, which will allow them to simulate the two-dimensional state in which electrons exist in high-temperature superconductors.

Their work can also be used to model the behavior of other strongly interacting systems, such as high-density neutron stars, which are only a few tens of kilometers in diameter but more massive than our sun.

Another substance that interacts as strongly as the atoms in the ultracold lithium gas clouds created at MIT is quark-gluon plasma, which existed at the universe's formation and has been recreated in particle colliders by colliding atomic nuclei at energies corresponding to a trillion degrees.

Written by Anne Trafton, MIT News Office

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>