Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MIT developments in quantum computing

03.03.2011
New MIT experiment would use quantum effects to perform otherwise intractable calculations

Quantum computers are computers that exploit the weird properties of matter at extremely small scales. Many experts believe that a full-blown quantum computer could perform calculations that would be hopelessly time consuming on classical computers, but so far, quantum computers have proven hard to build.

At the Association for Computing Machinery's 43rd Symposium on Theory of Computing in June, associate professor of computer science Scott Aaronson and his graduate student Alex Arkhipov will present a paper describing an experiment that, if it worked, would offer strong evidence that quantum computers can do things that classical computers can't. Although building the experimental apparatus would be difficult, it shouldn't be as difficult as building a fully functional quantum computer.

Aaronson and Arkhipov's proposal is a variation on an experiment conducted by physicists at the University of Rochester in 1987, which relied on a device called a beam splitter, which takes an incoming beam of light and splits it into two beams traveling in different directions. The Rochester researchers demonstrated that if two identical light particles — photons — reach the beam splitter at exactly the same time, they will both go either right or left; they won't take different paths. It's another quantum behavior of fundamental particles that defies our physical intuitions.

The MIT researchers' experiment would use a larger number of photons, which would pass through a network of beam splitters and eventually strike photon detectors. The number of detectors would be somewhere in the vicinity of the square of the number of photons — about 36 detectors for six photons, 100 detectors for 10 photons.

For any run of the MIT experiment, it would be impossible to predict how many photons would strike any given detector. But over successive runs, statistical patterns would begin to build up. In the six-photon version of the experiment, for instance, it could turn out that there's an 8 percent chance that photons will strike detectors 1, 3, 5, 7, 9 and 11, a 4 percent chance that they'll strike detectors 2, 4, 6, 8, 10 and 12, and so on, for any conceivable combination of detectors.

Calculating that distribution — the likelihood of photons striking a given combination of detectors — is a hard problem. The researchers' experiment doesn't solve it outright, but every successful execution of the experiment does take a sample from the solution set. One of the key findings in Aaronson and Arkhipov's paper is that, not only is calculating the distribution a hard problem, but so is simulating the sampling of it. For an experiment with more than, say, 100 photons, it would probably be beyond the computational capacity of all the computers in the world.

The question, then, is whether the experiment can be successfully executed. The Rochester researchers performed it with two photons, but getting multiple photons to arrive at a whole sequence of beam splitters at exactly the right time is more complicated. Barry Sanders, director of the University of Calgary's Institute for Quantum Information Science, points out that in 1987, when the Rochester researchers performed their initial experiment, they were using lasers mounted on lab tables and getting photons to arrive at the beam splitter simultaneously by sending them down fiber-optic cables of different lengths. But recent years have seen the advent of optical chips, in which all the optical components are etched into a silicon substrate, which makes it much easier to control the photons' trajectories.

The biggest problem, Sanders believes, is generating individual photons at predictable enough intervals to synchronize their arrival at the beam splitters. "People have been working on it for a decade, making great things," Sanders says. "But getting a train of single photons is still a challenge."

Sanders points out that even if the problem of getting single photons onto the chip is solved, photon detectors still have inefficiencies that could make their measurements inexact: in engineering parlance, there would be noise in the system. But Aaronson says that he and Arkhipov explicitly consider the question of whether simulating even a noisy version of their optical experiment would be an intractably hard problem. Although they were unable to prove that it was, Aaronson says that "most of our paper is devoted to giving evidence that the answer to that is yes." He's hopeful that a proof is forthcoming, whether from his research group or others'.

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>