Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Missing link’ galaxies discovered

25.11.2008
Astronomers at The University of Nottingham have identified a type of galaxy that could be the missing link in our understanding of galaxy evolution.

The STAGES study led by the University’s Centre for Astronomy and Particle Theory examines galaxy evolution using images from the Hubble Space Telescope.

A separate project — Galaxy Zoo — uses volunteers from the general public to classify galaxies. Both teams have identified a population of unusual red spiral galaxies that are setting out on the road to retirement after a lifetime of forming stars.

Astronomers place most normal galaxies into two camps according to their visual appearance: either disk-like systems like our own Milky Way, or round, rugby-ball shaped collections of stars known as ellipticals. In most cases, a galaxy's shape matches its colour; spiral galaxies appear blue because they are still vigorously forming hot young stars. Elliptical galaxies, on the other hand, are mostly old, dead and red, and tend to cluster together in crowded regions of space.

The Galaxy Zoo team examined the connection between the shapes and colours of over a million galaxies using images from the largest ever survey of the local universe — the Sloan Digital Sky Survey — and the help of hundreds of thousands of volunteers. A key ingredient to their success was reliably classifying the appearance of galaxies by actually looking at them, rather than relying on error-prone computer measurements. They found that many of the red galaxies in crowded regions are actually spiral galaxies, bucking the trend for red galaxies to be elliptical in shape.

Dr Steven Bamford, a Science and Technology Facilities Council (STFC) postdoctoral researcher at The University of Nottingham, led the Galaxy Zoo study. He said: “In order to have spiral arms, they must have been normal, blue, spiral galaxies up until fairly recently. But for some reason their star formation has been stopped, and they have turned red. Whatever caused them to stop forming stars can't have been particularly violent, or it would have destroyed the delicate spiral pattern.”

The Galaxy Zoo team concludes that a more subtle process must be at work, one that kills off star formation but does not disrupt the overall shape of the galaxy.

While Galaxy Zoo looked at the gross properties of millions of galaxies across a large chunk of sky, the STAGES project took a complementary approach by examining in detail just the sort of neighbourhoods where these transformations are expected to occur.

The team discovered that, despite their colour, the red spirals are actually hiding star formation behind a shroud of dust. Invisible to our (or Hubble's) eye, this star formation is only detectable in the infrared part of the spectrum — radiation emitted from the galaxies at wavelengths longer than visible light.

When observations from both projects are bought together, the picture that emerges is a gentle one. The star formation in blue spiral galaxies is gradually shut off and hidden behind dust, before petering out to form smooth "lenticular" (lens-shaped) red galaxies with no trace of spiral arms. To go further and transform the galaxy into an elliptical shape would require more violent mechanisms, such as the collision of galaxies.

Location is key to galaxy development. The red spirals are found primarily on the outskirts of crowded regions of space where galaxies cluster together. As a blue galaxy is drawn in by gravity from the rural regions to the suburbs, an interaction with its environment causes a slow-down in star formation. The closer in a galaxy is, the more it is affected.

But if environment decides where the process occurs, the mass of the galaxy decides how quickly it takes place. Because both STAGES and Galaxy Zoo looked at such large numbers of galaxies, they were able to further subdivide them according to how much they weighed. Both groups found that galaxy mass is also important.

Professor Bob Nichol of Portsmouth University, a Galaxy Zoo team member, explains: "Just as a heavyweight fighter can withstand a blow that would bring a normal person to his knees; a big galaxy is more resistant to being messed around by its local environment. Therefore, the red spirals that we see tend to be the larger galaxies — presumably because the smaller ones are transformed more quickly."

Meghan Gray, STFC Advanced Fellow at The University of Nottingham and leader of the STAGES survey, added: "Our two projects have approached the problem from very different directions, and it is gratifying to see that we each provide independent pieces of the puzzle pointing to the same conclusion."

Dr Christian Wolf, an STFC Advanced Research Fellow at the University of Oxford, trained the Hubble Space Telescope on a region of space crowded with galaxies known as the A901/902 supercluster for the STAGES project. Like the Galaxy Zoo team, Dr Wolf also uncovered a surprisingly large population of spiral galaxies in the supercluster that are red in colour.

Dr Wolf said: "For the STAGES galaxies, the Spitzer Space Telescope provided us with additional images at infrared wavelengths. With them, we were able to go further and peer through the dust to find the missing piece of the puzzle". Within the supercluster, Dr Wolf discovered that the red spirals were hiding low levels of hidden star formation, despite their otherwise lifeless appearance in visible light.

The next step for both teams is to find out exactly what shuts off the star formation, by looking inside the galaxies themselves. They suspect that behind the slow demise of galaxies is a process known as strangulation, in which a galaxy's fuel supply is stripped away as it encounters the crowd. Starved of the raw material needed to form new stars, it will slowly change colour from blue to red as its existing stars age.

The STAGES team's findings on the properties of red spiral galaxies will appear online on November 25 2008 at http://arxiv.org/list/astro-ph/new. The Galaxy Zoo results are available online at http://arxiv.org/abs/0805.2612

Tara de Cozar | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>