Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mirror Casting Event for the Giant Magellan Telescope

10.01.2012
On Jan. 14, the second 8.4-meter (27.6 ft) diameter mirror for the Giant Magellan Telescope, or GMT, will be cast inside a rotating furnace at the University of Arizona's Steward Observatory Mirror Lab underneath the campus football stadium. The mirror lab will host a special event to highlight this milestone in the creation of the optics for the Giant Magellan Telescope.

Members of the media are invited to visit the mirror lab on Jan. 14 between 9-11 a.m. MST to see the liquid glass as it is spun cast in a rotating oven at a temperature of 1170 degrees C (2140 F). This casting marks another major step in the construction of the Giant Magellan Telescope. There will be opportunities to interview leading scientists and engineers involved in the project.

The GMT features an innovative design utilizing seven mirrors, each 8.4 meters in diameter, arranged as segments of a single mirror 24.5 meters

(80 feet) in diameter, to bring starlight to a common focus via a set of adaptive secondary mirrors configured in a similar seven-fold pattern.

"In this design the outer six mirrors are off-axis paraboloids and represent the greatest optics challenge ever undertaken in astronomical optics by a large factor," said Roger Angel, director of the Steward Observatory Mirror Lab, or SOML.

The GMT will allow astronomers to answer some of the most pressing questions about the cosmos including the detection, imaging and characterization of planets orbiting other stars, the nature of dark matter and dark energy, the physics of black holes, and how stars and galaxies evolved during the earliest phases of the universe.

"The GMT will allow astronomers to observe for the first time the first stars formed after the Big Bang," said Steve Finkelstein, Hubble Fellow at The University of Texas at Austin. "I cannot wait to make these observations."

"Astronomical discovery has always been paced by the power of available telescopes and imaging technology," said Peter Strittmatter, director of Steward Observatory. "The GMT allows another major step forward in both sensitivity and image sharpness. In fact the GMT will be able to acquire images 10 times sharper than the Hubble Space Telescope and will provide a powerful complement not only to NASA's 6.5-meter James Webb Space Telescope, or JWST, but also to the Atacama Large Millimeter Array, or ALMA, and the Large Synoptic Survey Telescope, or LSST, both located in the southern hemisphere."

Patrick McCarthy, GMT project director, added, "This second GMT casting is going forward now because the primary optics are on the critical path for the project, and because the polishing of the first off-axis 8.4-meter GMT mirror is very close to completion, with an optical surface accuracy within about 25 nanometers, or about one-thousandth the thickness of a human hair."

Like other mirrors produced by the SOML, the GMT mirrors are designed to be spun cast, thereby achieving the basic front surface in the shape of a paraboloid. A paraboloid is the shape taken on by water in a bucket when the bucket is spun around its axis; the water rises up the walls of the bucket while a depression forms in the center.

Some 21 tons of borosilicate glass, made by the Ohara Corporation, flow into a pre-assembled mold to create a lightweight honeycomb glass structure that is very stiff and quickly adjusts to changes in nighttime air temperature, each resulting in sharper images. The mirror lab has already produced the world's four largest astronomical mirrors, each 8.4 meters in diameter. Two are in operation in the Large Binocular Telescope, or LBT - currently the largest telescope in the world; one is for the LSST, and the fourth is the first off-axis mirror for GMT. The UA's Mirror Lab has also produced five 6.5-meter mirrors, two of which are in the twin Magellan telescopes at Las Campanas Observatory in Chile.

"The novel technology developed at the mirror lab is creating a whole new generation of large telescopes with unsurpassed image sharpness and light collecting power," said Wendy Freedman, director of the Carnegie Observatories and chair of the GMTO Board. "The SOML mirrors in the twin Magellan Telescopes at our Las Campanas Observatory site are performing superbly and led to our adoption of this technology for the GMT."

The GMT is set to begin science operations in 2020 at the Las Campanas Observatory, exploiting the clear dark skies of the Atacama Desert in northern Chile.

"With funding commitments in hand for close to half of the $700 million required to complete the project, with one mirror essentially finished and the second about to be cast, and with the planned groundbreaking at Las Campanas in February of this year, the project is on track to meet this schedule goal," said Matthew Colless, Director of the Australian Astronomical Observatory.

"The giant mirrors being spun cast for the GMT at the Steward Observatory Mirror Lab are like the sails of the great ships of exploration ca. 1500, except here the discoveries are not lands across the ocean, but rather the nature of whole new worlds and island universes, spanning all of space and time," said Joaquin Ruiz, dean of the College of Science, University of Arizona. "We are proud to participate in such an exciting international scientific project as the GMT."

The event is supported by the University of Arizona's Steward Observatory and College of Science and by the GMTO Corp., a nonprofit entity with project offices based in Pasadena, Calif. The GMTO manages the GMT Project on behalf of its international partners, namely Astronomy Australia Ltd., the Australian National University, the Carnegie Institution for Science, Harvard University, the Korea Astronomy and Space Science Institute, the Smithsonian Institution, Texas A&M University, the University of Arizona, the University of Chicago and the University of Texas at Austin.

CONTACTS:

Roger Angel, director, SOML (rangel@as.arizona.edu; 520-621-6541)

Patrick McCarthy, director, GMTO (pmccarthy@gmto.org; 626-304-0222)

Wendy Freedman, chair, Board of Directors, GMTO
(wendy@obs.carnegiescience.edu; 626-304-0204)
Peter Strittmatter, director, Steward Observatory (pstrittmatter@email.arizona.edu; 520-621-6524)

Peter Wehinger, staff astronomer and director of development, Steward Observatory (wehinger@email.arizona.edu; 520-621-7662)

Cathi Duncan, coordinator (cduncan@as.arizona.edu; 520-626-8792)

LINKS:

For more information about the GMT, see www.gmto.org.

For images, see http://www.gmto.org/forpress.html.

The University of Arizona Steward Observatory Mirror Lab:
http://mirrorlab.as.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>