Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mirror Casting Event for the Giant Magellan Telescope

10.01.2012
On Jan. 14, the second 8.4-meter (27.6 ft) diameter mirror for the Giant Magellan Telescope, or GMT, will be cast inside a rotating furnace at the University of Arizona's Steward Observatory Mirror Lab underneath the campus football stadium. The mirror lab will host a special event to highlight this milestone in the creation of the optics for the Giant Magellan Telescope.

Members of the media are invited to visit the mirror lab on Jan. 14 between 9-11 a.m. MST to see the liquid glass as it is spun cast in a rotating oven at a temperature of 1170 degrees C (2140 F). This casting marks another major step in the construction of the Giant Magellan Telescope. There will be opportunities to interview leading scientists and engineers involved in the project.

The GMT features an innovative design utilizing seven mirrors, each 8.4 meters in diameter, arranged as segments of a single mirror 24.5 meters

(80 feet) in diameter, to bring starlight to a common focus via a set of adaptive secondary mirrors configured in a similar seven-fold pattern.

"In this design the outer six mirrors are off-axis paraboloids and represent the greatest optics challenge ever undertaken in astronomical optics by a large factor," said Roger Angel, director of the Steward Observatory Mirror Lab, or SOML.

The GMT will allow astronomers to answer some of the most pressing questions about the cosmos including the detection, imaging and characterization of planets orbiting other stars, the nature of dark matter and dark energy, the physics of black holes, and how stars and galaxies evolved during the earliest phases of the universe.

"The GMT will allow astronomers to observe for the first time the first stars formed after the Big Bang," said Steve Finkelstein, Hubble Fellow at The University of Texas at Austin. "I cannot wait to make these observations."

"Astronomical discovery has always been paced by the power of available telescopes and imaging technology," said Peter Strittmatter, director of Steward Observatory. "The GMT allows another major step forward in both sensitivity and image sharpness. In fact the GMT will be able to acquire images 10 times sharper than the Hubble Space Telescope and will provide a powerful complement not only to NASA's 6.5-meter James Webb Space Telescope, or JWST, but also to the Atacama Large Millimeter Array, or ALMA, and the Large Synoptic Survey Telescope, or LSST, both located in the southern hemisphere."

Patrick McCarthy, GMT project director, added, "This second GMT casting is going forward now because the primary optics are on the critical path for the project, and because the polishing of the first off-axis 8.4-meter GMT mirror is very close to completion, with an optical surface accuracy within about 25 nanometers, or about one-thousandth the thickness of a human hair."

Like other mirrors produced by the SOML, the GMT mirrors are designed to be spun cast, thereby achieving the basic front surface in the shape of a paraboloid. A paraboloid is the shape taken on by water in a bucket when the bucket is spun around its axis; the water rises up the walls of the bucket while a depression forms in the center.

Some 21 tons of borosilicate glass, made by the Ohara Corporation, flow into a pre-assembled mold to create a lightweight honeycomb glass structure that is very stiff and quickly adjusts to changes in nighttime air temperature, each resulting in sharper images. The mirror lab has already produced the world's four largest astronomical mirrors, each 8.4 meters in diameter. Two are in operation in the Large Binocular Telescope, or LBT - currently the largest telescope in the world; one is for the LSST, and the fourth is the first off-axis mirror for GMT. The UA's Mirror Lab has also produced five 6.5-meter mirrors, two of which are in the twin Magellan telescopes at Las Campanas Observatory in Chile.

"The novel technology developed at the mirror lab is creating a whole new generation of large telescopes with unsurpassed image sharpness and light collecting power," said Wendy Freedman, director of the Carnegie Observatories and chair of the GMTO Board. "The SOML mirrors in the twin Magellan Telescopes at our Las Campanas Observatory site are performing superbly and led to our adoption of this technology for the GMT."

The GMT is set to begin science operations in 2020 at the Las Campanas Observatory, exploiting the clear dark skies of the Atacama Desert in northern Chile.

"With funding commitments in hand for close to half of the $700 million required to complete the project, with one mirror essentially finished and the second about to be cast, and with the planned groundbreaking at Las Campanas in February of this year, the project is on track to meet this schedule goal," said Matthew Colless, Director of the Australian Astronomical Observatory.

"The giant mirrors being spun cast for the GMT at the Steward Observatory Mirror Lab are like the sails of the great ships of exploration ca. 1500, except here the discoveries are not lands across the ocean, but rather the nature of whole new worlds and island universes, spanning all of space and time," said Joaquin Ruiz, dean of the College of Science, University of Arizona. "We are proud to participate in such an exciting international scientific project as the GMT."

The event is supported by the University of Arizona's Steward Observatory and College of Science and by the GMTO Corp., a nonprofit entity with project offices based in Pasadena, Calif. The GMTO manages the GMT Project on behalf of its international partners, namely Astronomy Australia Ltd., the Australian National University, the Carnegie Institution for Science, Harvard University, the Korea Astronomy and Space Science Institute, the Smithsonian Institution, Texas A&M University, the University of Arizona, the University of Chicago and the University of Texas at Austin.

CONTACTS:

Roger Angel, director, SOML (rangel@as.arizona.edu; 520-621-6541)

Patrick McCarthy, director, GMTO (pmccarthy@gmto.org; 626-304-0222)

Wendy Freedman, chair, Board of Directors, GMTO
(wendy@obs.carnegiescience.edu; 626-304-0204)
Peter Strittmatter, director, Steward Observatory (pstrittmatter@email.arizona.edu; 520-621-6524)

Peter Wehinger, staff astronomer and director of development, Steward Observatory (wehinger@email.arizona.edu; 520-621-7662)

Cathi Duncan, coordinator (cduncan@as.arizona.edu; 520-626-8792)

LINKS:

For more information about the GMT, see www.gmto.org.

For images, see http://www.gmto.org/forpress.html.

The University of Arizona Steward Observatory Mirror Lab:
http://mirrorlab.as.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>