Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Miniaturizing Delay Lines: Quantum Spin Hall Effect for Light

Information traveling near the speed of light always sounds a little like science fiction. But this is what we get whenever we connect to the internet or watch cable television. Small packets of light called photons travel kilometers over networks of optical fiber, bringing information into our homes.

If fiber optic cable is ideal for carrying information, why haven’t photons replaced electrons entirely? Largely because miniaturizing photonic equipment all the way down micrometer scales often degrades their performance.

Manipulating photons such that they behave like their electrical counterparts- the electron- is a rich area of research with applications extending into quantum information and condensed matter.

Scientists are proposing a novel method for forcing photons to act like electrons. Two researchers at the Joint Quantum Institute (JQI)*, Mohammad Hafezi and Jacob M. Taylor, and two researchers at Harvard, Eugene A. Demler and Mikhail D. Lukin, propose an optical delay line that could fit onto a computer chip. Delay lines, added to postpone a photon’s arrival, are passive, but critical in processing signals. Kilometers of glass fiber are easily obtained, but fabricating optical elements that can fit on a single chip creates defects that can lead to reduced transmission of information.

The proposed delay line, which harnesses sophisticated quantum effects, would help to protect signals from degradation and maybe lead to more complex photonic devices. The new work is described this week in Nature Physics (Advanced online publication August 21) in an article titled “Robust optical delay lines via topological protection.” **

Quantum Hall physics is the remarkable phenomenon at the heart of this new approach. The quantum Hall effect occurs in a two-dimensional sea of electrons under the influence of a large magnetic field. The electrons are allowed to travel along the edges of the material but do not have enough energy to permeate throughout the bulk or central regions. It is as if there are conduction highways along the edge of the material. Even if there are defects in the material, like potholes in the road, electrons still make it to their destination.

These highways, called “edge states” are open for transit only at specific values of the externally applied magnetic field. Because the routes are so robust against disorder and reliably allow for electron traffic, this effect provides a standard for electrical resistance.

In recent years, scientists have discovered that some materials can exhibit what is known as the quantum spin Hall effect (QSHE), which depends on the “spin” attributes of the electron. Electrons not only carry charge, but also “spin.” Electrons can be thought of as tiny spinning tops that can rotate clockwise (in which case they are in a “spin-up” condition) or counter clockwise (“spin-down”). Notably, the robust edge states are present in the QSHE even without externally applied magnetic fields, making them amenable for developing new types of electronics.

In the Nature Physics article, the JQI-Harvard team is proposing a device supporting these “edge states” that are a hallmark of the QSHE, where light replaces the electrons. This device can be operated at room temperature and does not require any external magnetic field, not even the use of magnetic materials. They show that the resilience of the edge states can be used to engineer novel optical delay lines at the micrometer scale.

Hafezi explains that a key step is confining the photon pathways to two-dimensions: “In the QSHE, electrons move in a two-dimensional plane. Analogously, one can imagine a gas of photons moving in a two dimensional lattice of tiny glass racetracks called resonators.”

Resonators are circular light traps. Currently one-dimensional lines of these micro-racetracks can be used for miniaturized delay lines. Light, having particular colors (in other words, frequencies), can enter the array and become trapped in the racetracks. After a few swings around, the photons can hop to neighboring resonators. The researchers propose to extend this technology and construct a two-dimensional array of these resonators (see Figure).

Once light is in the array, how can it enter the quantum edge highway? The secret is in the design of the lattice of resonators and waveguides, which will determine the criteria for light hopping along the edge of the array rather than through the bulk. The photons will pile into the edge state only when the light has a particular color.

The fabrication process for these micro-resonators is susceptible to defects. This is true for both one- and two-dimensional resonator arrays, but it is the presence of quantum edge states that reduces loss in signal transmission.

When photons are in an edge state created by the 2D structure their transmission through the delay line is protected. Only along these highways will they will skirt around defects, unimpeded. They cannot do a U-turn upon encountering a defect because they do not have the appropriate light frequency, which is their ticket to enter the backwards-moving path.

Taylor explains an advantage of their proposal: “Right around the point where other [1D] technologies become operational, this same 2D technology also becomes operational. But thereafter, the transmitted signal will be much more robust for this approach to delay lines compared to the 1D approach.”

For example, the length of delay is given by the size of the array or the length of the photon’s path, whether 1D or 2D. However, as the number of resonators and optical features increases to accommodate longer delays, the inherent defects will eventually cause a roadblock for the photons, while the transmission using quantum pathways remains unobstructed.

The researchers hope that building these simple passive devices will lay the foundation for creating robust active circuit elements with photons, such as a transistor.

High resolution figures available upon request.

NIST TechBeat coverage of this research appears Monday August 22 (Media contact at NIST: Chad Boutin,, (301) 975-4261)

**“Robust optical delay lines via topological protection,” Mohammad Hafezi, Eugene A. Demler, Mikhail D. Lukin, and Jacob M. Taylor, Nature Physics (Advance Online Publication 10.1038/NPHYS2063)

*The Joint Quantum Institute (JQI) is a research partnership between University of Maryland (UMD) and the National Institute of Standards and Technology, with the support and participation of the Laboratory for Physical Sciences. Created in 2006 to pursue theoretical and experimental studies of quantum physics in the context of information science and technology, JQI is located on UMD's College Park campus.

Research Contact:

Mohammad Hafezi
Media contacts at Joint Quantum Institute:
Emily Edwards, 301-405-2291,
Phillip F. Schewe, 301-405-0989,

Emily Edwards | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

More VideoLinks >>>