Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature X-ray source using wiggling electrons

29.09.2009
A team at the Laboratory for Attosecond Physics of Ludwig Maximilian's University of Munich and Max Planck Institute of Quantum Optics in Garching has succeeded in reducing X-ray sources of typically several kilometres in size to the dimensions of a dining table. This involved a new method using a combination of laser light and hydrogen plasma.

The potential of laser technology seems inexhaustible. Fresh proof has now been presented by an international team at Munich's Cluster of Excellence "Munich Centre for Advanced Photonics" (MAP), in the Laboratory for Attosecond Physics (LAP) of Ludwig Maximilian's University of Munich and Max Planck Institute of Quantum Optics (MPQ) in Garching.

Also involved were Dresden-Rossendorf Research Centre and Oxford University's Clarendon Laboratory (UK). The physicists are the first to succeed on the laboratory scale in producing soft X-ray radiation by means of laser light.

This is done by first generating pulses of electrons with intense laser flashes. The laser beam accelerates the electron pulses to approximately the speed of light within a distance a thousand times shorter than that required by conventional techniques. These are then focused into a short undulator with alternating magnetic fields inside it, which forces the electrons to oscillate and thus causes them to emit X-ray radiation.

The experiment shows that it is possible to produce so-called brilliant X-ray radiation by means of light. A brilliant light source contains a very large number of photons of the same wavelength that are bunched in to a beam. Such radiation affords many more applications than ordinary X-ray radiation. Up until now, however, it could only be produced with the help of kilometre-long accelerators. MAP's scientists have now opened the way to produce brilliant X-ray radiation in much more compact device. This is reported in the online edition of Nature Physics (DOI: 10.1038/NPHYS1404, 27. September 2009).

Since its discovery at the end of the 19th century, X-ray radiation has provided insights into worlds invisible to the naked eye. It is difficult to imagine today's medicine, physics, materials science and chemistry without it. Meanwhile, it is possible to image structures that are no bigger than atoms, but this calls for brilliant x-ray radiation. Currently, such radiation is produced by the use of expensive accelerators that are kilometres long, thus making it not generally accessible. There are just a few facilities in the world that are capable of producing highly brilliant X-ray radiation. Brilliant radiation contains a very large number of photons (light particles) that also move in phase.

A team around Prof. Florian Grüner and Prof. Stefan Karsch at the Laboratory for Attosecond Physics now aims to provide brilliant X-ray radiation inexpensively in a compact device.

The physicists have now reached an important milestone. By means of intense laser light and a plasma of ionized hydrogen atoms, they have for the first time succeeded at a laboratory of LMU and MPQ in producing soft X-ray radiation with a wavelength of about 18 nanometres. For this purpose the physicists used laser pulses lasting just a few femtoseconds, a femtosecond being a millionth of a billionth of a second.

On this ultrashort time scales, the light pulses reach powers of about 40 terawatts; for comparison, an atomic power plant generates powers of about 1000 megawatts, which is 40,000 times less.

The enormous powers of the pulses are only made possible by their extreme shortness. The strong electric and magnetic fields of the light pulses separate electrons from hydrogen atoms and thus produce a plasma. These electrons are accelerated with the same laser pulse to almost the speed of light within a distance of only 15 mm, which is more than a thousand times shorter than that needed by conventional technologies used to date.

The electrons then enter an undulator, a device 30 centimetres long and 5 centimetres wide. It produces magnetic fields that force the electrons to take an undulating sinusoidal path, which transversely accelerates the electrons, causing them to emit photons in the soft X-ray range. So far, only light in the visible to infrared ranges, i.e. with much longer wavelengths than that of X-radiation has been shown with similar methods. The reason underlying the desire to gain access to the shortest possible light wavelengths is to be sought in the laws of optics. They state that with light one can only image structures equivalent in size to its wavelength. That is to say, if an object is investigated with X-ray light with a wavelength of 18 nanometres, it has to be at least as big in order to be resolvable. Atoms and numerous molecules, however, are much smaller.

Reducing the wavelength of laser-produced X-ray radiation is the next objective of MAP's scientists. "In principle, our experiment has demonstrated that it is possible to produce X-ray radiation in a university laboratory by means of ultrashort light pulses", states Matthias Fuchs, one of the LAP's scientists. But the potential of undulator technology is much greater. "Our experiment paves the way to an inexpensive source of laser-driven X-ray radiation", remarks group leader Florian Grüner.

The physicists' next step is to further increase the energy of the electrons propagating through the undulator. For this purpose the scientists will increase the energy of the light pulses producing the electrons. The prime objective of Prof. Florian Grüner's group is to realise a laser-driven free-electron laser whose light is about a million times more brilliant than the undulator radiation now measured. The radiation should then have wavelength of just a few nanometres. It could afford completely new, detailed insights into the microcosm of nature. The radiation can likewise be applied in, for example, medicine to detect minute tumours before they can spread. This would greatly enhance the chances of curing cancer patients.

Text: Thorsten Naeser

Original publication:

Matthias Fuchs, Raphael Weingartner, Antonia Popp, Zsuzsanna Major, Stefan Becker, Jens Osterhoff, Isabella Cortrie, Benno Zeitler, Rainer Hörlein, George D. Tsakiris, Ulrich Schramm, Tom P. Rowlands-Rees, Simon M. Hooker, Dietrich Habs, Ferenc Krausz, Stefan Karsch and Florian Grüner.
Laser-driven soft-X-ray undulator source
Nature Physics, DOI: 10.1038/NPHYS1404
Further information available from:
Prof. Florian Grüner
Ludwig-Maximilians-Universität München
Department für Physik der LMU München
Am Coulombwall 1
D-85748 Garching, Deutschland/Germany
Phone: (+ 49 89) 2891 - 4111
Fax: (+ 49 89) 2891 - 4072
E-mail: florian.gruener@physik.uni-muenchen.de
Prof. Stefan Karsch
Ludwig-Maximilians-Universität, München
Max-Planck-Institut für Quantenoptik, Garching
Hans-Kopfermann-Str. 1
D-85748 Garching
Phone: (+ 49 89) 32905 - 322
Fax: (+ 49 89) 32905 - 649
Email: stefan.karsch@mpq.mpg.de

Christine Kortenbruck | idw
Further information:
http://www.munich-photonics.de
http://www.fel.physik.uni-muenchen.de/personen/index.html
http://www.attoworld.de/people/Karsch/SKarsch.html

More articles from Physics and Astronomy:

nachricht Gamma-ray flashes from plasma filaments
18.04.2018 | Max-Planck-Institut für Kernphysik

nachricht How does a molecule vibrate when you “touch” it?
17.04.2018 | Universität Regensburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>