Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature X-ray source using wiggling electrons

29.09.2009
A team at the Laboratory for Attosecond Physics of Ludwig Maximilian's University of Munich and Max Planck Institute of Quantum Optics in Garching has succeeded in reducing X-ray sources of typically several kilometres in size to the dimensions of a dining table. This involved a new method using a combination of laser light and hydrogen plasma.

The potential of laser technology seems inexhaustible. Fresh proof has now been presented by an international team at Munich's Cluster of Excellence "Munich Centre for Advanced Photonics" (MAP), in the Laboratory for Attosecond Physics (LAP) of Ludwig Maximilian's University of Munich and Max Planck Institute of Quantum Optics (MPQ) in Garching.

Also involved were Dresden-Rossendorf Research Centre and Oxford University's Clarendon Laboratory (UK). The physicists are the first to succeed on the laboratory scale in producing soft X-ray radiation by means of laser light.

This is done by first generating pulses of electrons with intense laser flashes. The laser beam accelerates the electron pulses to approximately the speed of light within a distance a thousand times shorter than that required by conventional techniques. These are then focused into a short undulator with alternating magnetic fields inside it, which forces the electrons to oscillate and thus causes them to emit X-ray radiation.

The experiment shows that it is possible to produce so-called brilliant X-ray radiation by means of light. A brilliant light source contains a very large number of photons of the same wavelength that are bunched in to a beam. Such radiation affords many more applications than ordinary X-ray radiation. Up until now, however, it could only be produced with the help of kilometre-long accelerators. MAP's scientists have now opened the way to produce brilliant X-ray radiation in much more compact device. This is reported in the online edition of Nature Physics (DOI: 10.1038/NPHYS1404, 27. September 2009).

Since its discovery at the end of the 19th century, X-ray radiation has provided insights into worlds invisible to the naked eye. It is difficult to imagine today's medicine, physics, materials science and chemistry without it. Meanwhile, it is possible to image structures that are no bigger than atoms, but this calls for brilliant x-ray radiation. Currently, such radiation is produced by the use of expensive accelerators that are kilometres long, thus making it not generally accessible. There are just a few facilities in the world that are capable of producing highly brilliant X-ray radiation. Brilliant radiation contains a very large number of photons (light particles) that also move in phase.

A team around Prof. Florian Grüner and Prof. Stefan Karsch at the Laboratory for Attosecond Physics now aims to provide brilliant X-ray radiation inexpensively in a compact device.

The physicists have now reached an important milestone. By means of intense laser light and a plasma of ionized hydrogen atoms, they have for the first time succeeded at a laboratory of LMU and MPQ in producing soft X-ray radiation with a wavelength of about 18 nanometres. For this purpose the physicists used laser pulses lasting just a few femtoseconds, a femtosecond being a millionth of a billionth of a second.

On this ultrashort time scales, the light pulses reach powers of about 40 terawatts; for comparison, an atomic power plant generates powers of about 1000 megawatts, which is 40,000 times less.

The enormous powers of the pulses are only made possible by their extreme shortness. The strong electric and magnetic fields of the light pulses separate electrons from hydrogen atoms and thus produce a plasma. These electrons are accelerated with the same laser pulse to almost the speed of light within a distance of only 15 mm, which is more than a thousand times shorter than that needed by conventional technologies used to date.

The electrons then enter an undulator, a device 30 centimetres long and 5 centimetres wide. It produces magnetic fields that force the electrons to take an undulating sinusoidal path, which transversely accelerates the electrons, causing them to emit photons in the soft X-ray range. So far, only light in the visible to infrared ranges, i.e. with much longer wavelengths than that of X-radiation has been shown with similar methods. The reason underlying the desire to gain access to the shortest possible light wavelengths is to be sought in the laws of optics. They state that with light one can only image structures equivalent in size to its wavelength. That is to say, if an object is investigated with X-ray light with a wavelength of 18 nanometres, it has to be at least as big in order to be resolvable. Atoms and numerous molecules, however, are much smaller.

Reducing the wavelength of laser-produced X-ray radiation is the next objective of MAP's scientists. "In principle, our experiment has demonstrated that it is possible to produce X-ray radiation in a university laboratory by means of ultrashort light pulses", states Matthias Fuchs, one of the LAP's scientists. But the potential of undulator technology is much greater. "Our experiment paves the way to an inexpensive source of laser-driven X-ray radiation", remarks group leader Florian Grüner.

The physicists' next step is to further increase the energy of the electrons propagating through the undulator. For this purpose the scientists will increase the energy of the light pulses producing the electrons. The prime objective of Prof. Florian Grüner's group is to realise a laser-driven free-electron laser whose light is about a million times more brilliant than the undulator radiation now measured. The radiation should then have wavelength of just a few nanometres. It could afford completely new, detailed insights into the microcosm of nature. The radiation can likewise be applied in, for example, medicine to detect minute tumours before they can spread. This would greatly enhance the chances of curing cancer patients.

Text: Thorsten Naeser

Original publication:

Matthias Fuchs, Raphael Weingartner, Antonia Popp, Zsuzsanna Major, Stefan Becker, Jens Osterhoff, Isabella Cortrie, Benno Zeitler, Rainer Hörlein, George D. Tsakiris, Ulrich Schramm, Tom P. Rowlands-Rees, Simon M. Hooker, Dietrich Habs, Ferenc Krausz, Stefan Karsch and Florian Grüner.
Laser-driven soft-X-ray undulator source
Nature Physics, DOI: 10.1038/NPHYS1404
Further information available from:
Prof. Florian Grüner
Ludwig-Maximilians-Universität München
Department für Physik der LMU München
Am Coulombwall 1
D-85748 Garching, Deutschland/Germany
Phone: (+ 49 89) 2891 - 4111
Fax: (+ 49 89) 2891 - 4072
E-mail: florian.gruener@physik.uni-muenchen.de
Prof. Stefan Karsch
Ludwig-Maximilians-Universität, München
Max-Planck-Institut für Quantenoptik, Garching
Hans-Kopfermann-Str. 1
D-85748 Garching
Phone: (+ 49 89) 32905 - 322
Fax: (+ 49 89) 32905 - 649
Email: stefan.karsch@mpq.mpg.de

Christine Kortenbruck | idw
Further information:
http://www.munich-photonics.de
http://www.fel.physik.uni-muenchen.de/personen/index.html
http://www.attoworld.de/people/Karsch/SKarsch.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>