Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Miniature invisibility 'carpet cloak' hides more than its small size implies

Optical cloaking approach described in Optics Express shows potential for myriad futuristic applications

Invisibility cloaks are seemingly futuristic devices capable of concealing very small objects by bending and channeling light around them. Until now, however, cloaking techniques have come with a significant limitation—they need to be orders of magnitude larger than the object being cloaked.

This places serious constraints on practical applications, particularly for the optoelectronics industry, where size is a premium and any cloaking device would need to be both tiny and delicate.

An international team of physicists from the Technical University of Denmark (DTU), the University of Birmingham, UK, and Imperial College London, however, may have overcome this size limitation by using a technology known as a "carpet cloaks," which can conceal a much larger area than other cloaking techniques of comparable size. The researchers achieved their result by using metamaterials, artificial materials engineered to have optical properties not found in nature. They describe their approach in the Optical Society's (OSA) open-access journal Optics Express.

Jingjing Zhang, a postdoctoral researcher at DTU's Fotonik Department of Photonics Engineering and Structured Electromagnetic Materials, and an author of the Optics Express paper, explains that the team's new carpet cloak, which is based on an alternating-layer structure on a silicon-on-insulator (SOI) platform, introduces a flexible way to address the size problem.

"This new cloak, consisting of metamaterials, was designed with a grating structure that is simpler than previous metamaterial structures for cloaks," she says.

Grating structures channel light of a particular wavelength around an object. A grating structure is simply a series of slits or openings that redirect a beam of light.

"The highly anisotropic material comprising the cloak is obtained by adopting semiconductor manufacturing techniques that involve patterning the top silicon layer of an SOI wafer with nanogratings of appropriate filling factor. This leads to a cloak only a few times larger than the cloaked object," says Zhang. In this case, filling factor simply refers to the size of the grating structure and determines the wavelengths of light that are affected by the cloak.

By precisely restoring the path of the reflecting wave from the surface, the cloak creates an illusion of a flat plane for a triangular bump on the surface—hiding its presence over wavelengths ranging from 1480nm to 1580nm (see figure).

In less technical terms, the carpet cloaks work by essentially disguising an object from light, making it appear like a flat ground plane.

"The cloak parameters can be tweaked by tuning the filling factor and the orientation of the layers," says Zhang. "Therefore, layered materials bypass the limitation of natural materials at hand and give us extra freedom to design the devices as desired." In contrast to previous works based on nanostructures, the cloaking carpet used in this work also shows advantages of easier design and fabrication.

The cloak is made exclusively of dielectric materials that are highly transparent to infrared light, so the cloak itself is very efficient and absorbs a negligible fraction of energy.

Zhang and her colleagues are also looking at ways of improving the technology. They report in their Optics Express paper that even though the cloaking ensures that the beam shape is unaffected by the presence of the object, the beam intensity is slightly reduced. They attribute this to reflection at the cloak's surface, and partly by imperfections of the fabrication. They also determined that adding an additional layer of material around the cloak and improving uniformity of the grating would help eliminate reflection and scattering issues.

"Although our experiment was carried out at near-infrared frequencies, this design strategy is applicable in other frequency ranges," notes Zhang. "We anticipate that with more precise fabrication, our technique should also yield a true invisibility carpet that works in the microwave and visible parts of the spectrum and at a larger size—showing promise for many futuristic defense and other applications."

Paper: "Homogenous optical cloak constructed with uniform layered structures," Jingjing Zhang, Liu Liu, Yo Luo, Shuang Zhang, and Niels Asger Mortensen, Optics Express, Volume 19, Issue 9, pp. 8625-8631. Available at:

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit

Angela Stark | EurekAlert!
Further information:

Further reports about: Miniature Optic SOI process flow Society Venus Express carpet cloak optical data

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>