Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mini cargo transporters on a rat run

27.04.2012
New insight on molecular motor movement

Molecular motors are the key to the development of higher forms of life. They transport proteins, signal molecules and even entire chromosomes down long protein fibers, components of the so-called cytoskeleton, from one location in the cell to another.


Biophysicists of the Technische Universitaet Muenchen and the Ludwig Maximillians Universitaet Muenchen have discovered why some of these transporters can, like cars on a multi-lane motorway, change lanes: The heads of one kinesin (red) have a longer range than the other (blue) which allows "lane change" between the individual fibers (protofilaments) of the microtubule and results in a spiraling movement of the motor on the microtubule. A shorter range of the heads results in a straight movement of the motor. Credit: Melanie Brunnbauer /TU Muenchen

Not unlike trucks on a motorway, there are permanently thousands of these small motor proteins underway at any given point in time – a highly coordinated and extremely fast mode of transport. This highly efficient infrastructure is a prerequisite for the formation of large, complex cells and multicellular organisms. Bacteria, for example, lack this foundation, because they possess neither molecular motors nor cytoskeletons.

Kinesins represent one class of such molecular motors. They run along microtubules comprising 13 individual fibers arranged in a tube form. Kinesins are made up of a twisted pair of protein chains. Each chain comprises a head that can dock to the surface of the microtubules and a neck domain, as well as a stalk and tail domain that the cargo is attached to. Kinesins move forward by placing one head in front of the other in alternation which resembles human walking. The first mechanistically scrutinized kinesin was Kinesin-1, which performs numerous steps in succession without detaching from the microtubule. In the process it moves ahead in a perfectly straight path on its long journey, always remaining on a single fiber of the microtubule.

Scientists led by Zeynep Oekten, group leader at the Biophysics Department of the Technische Universitaet Muenchen, and Melanie Brunnbauer, a doctoral candidate at the Biophysics Department, have now for the first time demonstrated that kinesins also "switch lanes" during transport. The scientists identified the region in the kinesin protein that determines whether a given kinesin type moves on a straight path or in a spiral fashion.

It is a structural element in the neck domain. "If the neck region is stable, the two kinesin heads have only limited reach. The kinesin cannot make any sidesteps and thus moves straight ahead," says Oekten. "However, if the responsible area becomes destabilized, the reach of the heads is increased and the motor protein can jump fibers and spiral around the microtubule."

To confirm this new insight, the scientists integrated specific amino acids into the responsible areas – a kind of molecular switch that allowed them to regulate the reach of the two heads. The result left no doubt: Destabilizing the neck region of the Kinesin-1 motor increases the reach of the two heads, which in turn causes the Kinesin-1 to depart from its normally perfectly straight path and move along a spiral-shaped path. When they mimicked a stable neck region using a chemical crosslinker, they coerced the protein into running straight again.

Oekten and Brunnbauer arrived at their new insight using a unique experimental setup. They placed two 3-micron large synthetic beads in a solution and trapped each using a laser beam, a so-called pair of "optical tweezers." Then, in precision work, they placed a piece microtubule between the beads. In a final step, again using a laser beam, they trapped a third bead coated with a specific type of kinesin and carefully placed it onto the microtubule.

As soon as they deactivated the third laser beam, the motor protein started marching forward and the scientist could follow the path of the molecule under the microscope. "In this way we were able, for the first time ever, to directly observe the spiraling movement of a motor type," explains Oekten. "When we saw the teetering movement of a Kinesin-2 protein for the first time, we all laughed. The motion was so clear and obvious, you just had to look at it and all doubt vanished." The experimental setup allows the molecular motors to move freely, thereby emulating real-life conditions in the cell much better than previous methods of investigation.

Using their new experimental setup, Oekten and Brunnbauer investigated a whole series of different Kinesin-2 proteins from various organisms – with an unexpected result: Contrary to the hitherto prevalent assumption that kinesins typically move only on straight paths, almost all kinesins displayed some form of spiral movement, in manifold variations. "This shows us that spiral motion is not an exception in nature, but rather the rule," explains Oekten. "In fact, the more relevant question is why evolution has brought about the straight-line movement as we observe with the Kinesin-1. That is truly unusual considering the nano-scale precision it requires to confine a kinesin transporter on an exclusively straight path." The researchers Oekten and Brunnenbauer hope to more closely investigate the reasons for the various kinds of motion in the future.

The research was funded by the Deutsche Forschungsgemeinschaft (DFG, SFB 863). In the publication, the authors extend special thanks to Brunnbauer's baby son Benedikt and his babysitter Christine Wurm. In the Biophysics Department, Melanie Brunnbauer found the flexibility and support she needed to continue her work following the birth of her son. Her success provides the proof that family and cutting-edge research are not mutually exclusive – given the right conditions.

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>