Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out of mind in a matter of seconds

25.01.2011
Surprising rate at which neuronal networks in the cerebral cortex delete sensory information

The dynamics behind signal transmission in the brain are extremely chaotic. This conclusion has been reached by scientists from the Max Planck Institute for Dynamics and Self-Organization at the University of Göttingen and the Bernstein Center for Computational Neuroscience Göttingen. In addition, the Göttingen-based researchers calculated, for the first time, how quickly information stored in the activity patterns of the cerebral cortex neurons is discarded. At one bit per active neuron per second, the speed at which this information is forgotten is surprisingly high. Physical Review Letters, 105, 268104 (2010)

The brain codes information in the form of electrical pulses, known as spikes. Each of the brain’s approximately 100 billion interconnected neurons acts as both a receiver and transmitter: these bundle all incoming electrical pulses and, under certain circumstances, forward a pulse of their own to their neighbours. In this way, each piece of information processed by the brain generates its own activity pattern. This indicates which neuron sent an impulse to its neighbours: in other words, which neuron was active, and when. Therefore, the activity pattern is a kind of communication protocol that records the exchange of information between neurons.

How reliable is such a pattern? Do even minor changes in the neuronal communication produce a completely different pattern in the same way that a modification to a single contribution in a conversation could alter the message completely? Such behaviour is defined by scientists as chaotic. In this case, the dynamic processes in the brain could not be predicted for long. In addition, the information stored in the activity pattern would be gradually lost as a result of small errors. As opposed to this, so-called stable, that is non-chaotic, dynamics would be far less error-prone. The behaviour of individual neurons would then have little or no influence on the overall picture.

The new results obtained by the scientists in Göttingen have revealed that the processes in the cerebral cortex, the brain’s main switching centre, are extremely chaotic. The fact that the researchers used a realistic model of the neurons in their calculations for the first time was crucial. When a spike enters a neuron, an additional electric potential forms on its cell membrane. The neuron only becomes active when this potential exceeds a critical value. "This process is very important", says Fred Wolf, head of the Theoretical Neurophysics research group at the Max Planck Institute for Dynamics and Self-Organization. "This is the only way that the uncertainty as to when a neuron becomes active can be taken into account precisely in the calculations".

Older models described the neurons in a very simplified form and did not take into account exactly how and under what conditions a spike arises. "This gave rise to stable dynamics in some cases but non-stable dynamics in others", explains Michael Monteforte from the Max Planck Institute for Dynamics and Self-Organization, who is also a doctoral student at the Göttingen Graduate School for Neurosciences and Molecular Biosciences (GGNB). It was thus impossible to resolve the long-established disagreement as to whether the processes in the cerebral cortex are chaotic or not, using these models.

Thanks to their more differentiated approach, the Göttingen-based researchers were able to calculate, for the first time, how quickly an activity pattern is lost through tiny changes; in other words, how it is forgotten. Approximately one bit of information disappears per active neuron per second. "This extraordinarily high deletion rate came as a huge surprise to us", says Wolf. It appears that information is lost in the brain as quickly as it can be "delivered" from the senses.

This has fundamental consequences for our understanding of the neural code of the cerebral cortex. Due to the high deletion rate, information about sensory input signals can only be maintained for a few spikes. These new findings therefore indicate that the dynamics of the cerebral cortex are specifically tailored to the processing of brief snapshots of the outside world.

Dr. Fred Wolf | Max-Planck-Gesellschaft
Further information:
http://www.mpg.de/1046804/brain_forgetting
http://www.mpg.de

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>