Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Millisecond pulsar in spin mode

04.11.2011
Astronomers have tracked down the first gamma-ray pulsar in a globular cluster of stars. It is around 27,000 light years away and thus also holds the distance record in this class of objects.

Moreover, its high luminosity indicates that J1823-3021A is the youngest millisecond pulsar found to date, and that its magnetic field is much stronger than theoretically predicted. This therefore suggests the existence of a new population of such extreme objects. The discovery was made by Paulo Freire and an international team of scientists from the Max Planck Institute for Radio Astronomy in Bonn. The researchers evaluated data from the Fermi space telescope.


The NGC 6624 globular cluster in the Sagittarius constellation. The astronomers have identified a total of six pulsars in this globular cluster to date; the first one was J1823-3021A. Credit: Copyright NASA/ESA/I. King (University of California, Berkeley)

When the nuclear fuel in the core of a massive star is spent, the star collapses and releases so much energy in the process that it briefly radiates a billion times brighter than before. Such a supernova also marks the birth of a neutron star, an extremely compact atomic nucleus with a diameter of around 20 kilometres but several million times the mass of the Earth. The neutron star spins very rapidly about its axis and accelerated; charged particles emit electromagnetic radiation along the magnetic field lines in different wavelength bands. This radiation is bundled along the magnetic field's axis - like the light beam from a beacon.

Such a pulsar has rotational periods of between 16 milliseconds and eight seconds. The so-called millisecond pulsars, which have rotational periods down to 1.4 milliseconds, rotate even faster – this corresponds to 43,000 rotations per minute! It would seem that the initially lower rotational speed was subsequently increased as matter was accreted from a companion star. It is indeed the case that most of these millisecond pulsars can be found in binary star systems.

Millisecond pulsars have an extremely high rotational stability – even on long time scales; their cycle accuracy is comparable with that of the best atomic clocks on Earth. They are like huge flywheels in space, and hardly anything can affect their rotation. These objects can assist scientists to test the General Theory of Relativity; they can also be used in the search for gravitational waves and to analyse the properties of the superdense matter in the pulsar.

"We have now discovered more than 100 of these objects with radio telescopes," says Paulo Freire from the Max Planck Institute for Radio Astronomy. "The high sensitivity of the Fermi telescope has now enabled us to track down a millisecond pulsar by its gamma radiation as well for the first time." The researchers found the pulsar with the designation J1823−3021A in the centre of a globular cluster.

Globular clusters are very old swarms of hundreds of thousands of stars whose gravitational forces bind them to each other. They are home to a large number of binary star systems that can lead to the formation of millisecond pulsars. One of these star clusters is NGC 6624 out towards the Sagittarius constellation. It is in the central region of our Milky Way, around 27,000 light years away. The researchers have been able to find a total of six pulsars in this globular cluster; J1823-3021A was the first.

With a rotational period of only 5.44 milliseconds (11,000 rotations per minute) it is also the most luminous pulsar detected to date in a globular cluster. J1823-3021A had already been discovered in the radio band back in 1994. Since then, regular time sequence measurements have been carried out with large radio telescopes, in particular with the Lovell telescope of the University of Manchester (Great Britain) and the Nançay telescope in France.

"We were very surprised to discover that the pulsar radiates very brightly in the gamma radiation band as well," says Damien Parent from the US Center for Earth Observing and Space Research. "We did not expect these millisecond pulsars to be so bright. This implies an unexpectedly strong magnetic field for such a rapidly rotating pulsar."

"This is a challenge for our current theories regarding the formation of such pulsars," explains Michael Kramer, Director at the Max Planck Institute in Bonn and head of the Fundamental Physics in Radio Astronomy research group there. "We are currently investigating a whole series of possible explanations. Nature might even be forming millisecond pulsars in a way that we do not even have on the radar as yet."

"No matter how these anomalous pulsars might form, one thing seems to be certain," says Paulo Freire: "In globular clusters, at least, these are objects so young that they are probably forming as often as the large number of normal millisecond pulsars which we already know about."

Paulo Freire | EurekAlert!
Further information:
http://www.mpifr-bonn.mpg.de

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>