Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the Milky Way doomed to be destroyed by galactic bombardment? Probably not, study says

01.09.2009
As scientists attempt to learn more about how galaxies evolve, an open question has been whether collisions with our dwarf galactic neighbors will one day tear apart the disk of the Milky Way.

That grisly fate is unlikely, a new study now suggests.

While astronomers know that such collisions have probably occurred in the past, the new computer simulations show that instead of destroying a galaxy, these collisions “puff up” a galactic disk, particularly around the edges, and produce structures called stellar rings.

The finding solves two mysteries: the likely fate of the Milky Way at the hands of its satellite galaxies -- the most massive of which are the Large and Small Magellanic Clouds -- and the origin of its puffy edges, which astronomers have seen elsewhere in the universe and dubbed “flares.”

The mysterious dark matter that makes up most of the universe plays a role, the study found.

Astronomers believe that all galaxies are embedded within massive and extended halos of dark matter, and that most large galaxies lie at the intersections of filaments of dark matter, which form a kind of gigantic web in our universe. Smaller satellite galaxies flow along strands of the web, and get pulled into orbit around large galaxies such as our Milky Way.

Ohio State University astronomer Stelios Kazantzidis and his colleagues performed detailed computer simulations of galaxy formation to determine what would happen if a satellite galaxy -- such as the Large Magellanic Cloud and its associated dark matter -- collided with a spiral galaxy such as our own.

Their conclusion: The satellite galaxy would gradually disintegrate, while its gravity tugged at the larger galaxy’s edge, drawing out stars and other material. The result would be a flared galactic disk such as that of the Milky Way, which starts out narrow at the center and then widens toward the edges.

The results may ease the mind of anyone who feared that our galactic neighbors and their associated dark matter would eventually destroy our galactic disk -- albeit billions of years from now.

Kazantzidis couldn’t offer a 100-percent guarantee, however.

“We can’t know for sure what’s going to happen to the Milky Way, but we can say that our findings apply to a broad class of galaxies similar to our own,” Kazantzidis said. “Our simulations showed that the satellite galaxy impacts don't destroy spiral galaxies -- they actually drive their evolution, by producing this flared shape and creating stellar rings -- spectacular rings of stars that we’ve seen in many spiral galaxies in the universe.”

He and his colleagues didn’t set out solely to determine the fate of our galaxy. In two papers that have appeared in the Astrophysical Journal, they report that their simulations offer a new way to test -- and validate -- the current cosmological model of the universe.

According to the model, the universe has contained a certain amount of normal matter and a much larger amount of dark matter, starting with the Big Bang. The exact nature of dark matter is unknown, and scientists are hunting for clues by studying the interplay between dark matter and normal matter.

This is the first time that collisions between spiral galaxies and satellites have been simulated at this level of detail, Kazantzidis said, and the study revealed that galaxies’ flared edges and stellar rings are visible signs of these interactions.

Our galaxy measures 100,000 light-years across (one light year equals six trillion miles). Yet we are surrounded by a cloud or “halo” of dark matter that’s 10 times bigger -- 1 million light-years across, he explained.

While astronomers envision the dark matter halo as partly diffuse, it contains dense regions that orbit our galaxy in association with satellite galaxies, such as the Magellanic Clouds.

“We know from cosmological simulations of galaxy formation that these smaller galaxies probably interact with galactic disks very frequently throughout cosmic history. Since we live in a disk galaxy, it is an important question whether these interactions could destroy the disk,” Kazantzidis said. “We saw that galaxies are not destroyed, but the encounters leave behind a wealth of signatures that are consistent with the current cosmological model, and consistent with our observations of galaxies in the universe.”

One signature is the flaring of the galaxy’s edges, just as the edges of the Milky Way and of other external galaxies are flared.

We consider this flaring to be one of the most important observable consequences of interactions between in-falling satellite galaxies and the galactic disk.”

In both articles, the researchers considered the impacts of many different smaller galaxies onto a larger, primary disk galaxy. They calculated the likely number of satellites and the orbital paths of those satellites, and then simulated what would happen during collision, including when the dark matter interacted gravitationally with the disk of the spiral galaxy.

None of the disk galaxies were torn apart; to the contrary, the primary galaxies gradually disintegrated the in-falling satellites, whose material ultimately became part of the larger galaxy.

The satellites passed through the galactic disk over and over, and on each pass, they would lose some of their mass, a process that would eventually destroy them completely.

Though the primary galaxy survived, it did form flared edges which closely resembled our galaxy’s flared appearance today.

“Every spiral galaxy has a complex formation and evolutionary history,” Kazantzidis said. “We would hope to understand exactly how the Milky Way formed and how it will evolve. We may never succeed in knowing its exact history, but we can try to learn as much as we can about it, and other galaxies like it.”

His coauthors included James Bullock from the University of California at Irvine, Andrew Zentner from the University of Pittsburgh, Andrey Kravtsov from the University of Chicago, Leonidas Moustakas from NASA’s Jet Propulsion Laboratory (JPL) , and Victor Debattista from the University of Central Lancashire in the UK.

Kazantzidis’ research was funded by the Center for Cosmology and Astro-Particle Physics at Ohio State. Other funding came from the National Science Foundation, NASA, the University of Pittsburgh, and the University of Chicago. The numerical simulations were performed on the zBox supercomputer at the University of Zurich and on the Cosmos cluster at JPL.

Contact: Stelios Kazantzidis, (614) 247-1501; stelios@mps.ohio-state.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Stelios Kazantzidis | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>