Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milky Way's black hole getting ready for snack

23.10.2012
Get ready for a fascinating eating experience in the center of our galaxy.

The event involves a black hole that may devour much of an approaching cloud of dust and gas known as G2.


Simulations of the dust and gas cloud G2 on its orbit around the Milky Way central black hole SgrA*.
Photo courtesy of M. Schartmann and L. Calcada/ European Southern Observatory and Max-Planck-Institut fur Extraterrestrische Physik.

A supercomputer simulation prepared by two Lab physicists and a former postdoc suggests that some of G2 will survive, although its surviving mass will be torn apart, leaving it with a different shape and questionable fate.

The findings are the work of computational physicist Peter Anninos and astrophysicist Stephen Murray, both of AX division within the Weapons and Complex Integration Directorate (WCI), along with their former postdoc Chris Fragile, now an associate professor at the College of Charleston in South Carolina, and his student, Julia Wilson.

They came up with six simulations, using the Cosmos++ computer code developed by Anninos and Fragile, which required more than 50,000 computing hours on 3,000 processors on the Palmetto supercomputer at Clemson University in Columbia, S.C.

Previous simulations of the upcoming event had been done in two-dimensions, but the Cosmos++ code includes 3D capability, as well as a unique "moving mesh" enhancement, allowing the simulation to more-efficiently follow the cloud's progression toward the black hole.

The black hole is known as Sgr A*. "Sgr" is the abbreviation for Sagittarius, the constellation near the center of the Milky Way. Most galaxies have a black hole at their center, some thousands of times bigger than this one.

"While this one is 3-to-4 million times as big as our sun, it has been relatively quiet," according to Murray. "It's not getting fed very much." Contrary to their name, black holes can appear very bright. That's because gas orbiting them loses energy via friction, getting hotter and brighter as it spirals inward before falling into the black hole.

The composition of the G2 cloud is still a mystery.

Astronomers originally noticed something in the region in 2002, but the first detailed determinations of its size and orbit came only this year. The dust in the cloud has been measured at about 550 degrees Kelvin, approximately twice as hot as the surface temperature on Earth. The gas, mostly hydrogen, is about 10,000 degrees Kelvin, or almost twice as hot as the surface of the sun.

Its origin is still unknown.

Murray says: "The speculation ranges from it having been an old star that had kind of a burp and lost some of its outer atmosphere, to something that was trying to be a planet and couldn't quite manage it because the environment was too hot."

As the cloud approaches the black hole and begins to fall into what Murray describes as "a gravity well" beginning next September, it will begin to shed energy, causing it to heat to incredibly high temperatures, visible to radio and X-ray telescopes on Earth as well as orbiting satellites such as NASA's Chandra X-ray Observatory.

But it won't be a collision course.

The point at which a stellar object can no longer escape being swallowed by a black hole is known as the Schwarzschild radius, a quantity whose value depends on the black hole's mass, the speed of light and the gravitational constant.

The cloud will actually pass far enough away that it will escape the point of no return by approximately 2,200 Schwarzschild radii, which in this case is about 200 times as far as Earth is from the sun.

But the supercomputer simulations show that the cloud will not survive the encounter.

According to Anninos: "There's too much dynamical friction that it experiences through hydrodynamic instabilities and tidal stretching from the black hole. So a lot of its kinetic energy and angular momentum will be dissipated away and it will just sort of break up into some sort of incoherent structure. Much of it will join the rest of the hot accretion disk around the black hole, or just fall and get captured by the black hole. It will lose a lot of its energy but not all of it. It will become so diffuse that it's unlikely that any remnant of the gas will continue on its orbital track."

The close encounter will take several months. The entire event is predicted to last less than a decade.

The simulation is posted on the Web. It shows the cloud modeled as a simple gas sphere, near the point in its orbit where it was first discovered. As it approaches Sgr A*, a process known as tidal stretching increasingly distorts the cloud. By the end of 2012, the cloud will be nearly five times longer than it is wide.

Along with tidal stretching, the cloud also experiences resistance in the form of ram pressure as it tries to plow through the hot interstellar gas that already fills the space around Sgr A*. The interactions of G2 with this background gas cause further disruptions to the cloud from Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Collectively, these effects act to strip some material from the cloud and feed it into Sgr A*.

An article describing the simulation research will appear in an upcoming issue of the Astrophysical Journal.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Bob Hirschfeld | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/news/newsreleases/2012/Oct/NR-12-10-07.html

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>