Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mid-Depth Soil Collected for Lab Test on Phoenix Mars Lander

22.08.2008
NASA's Phoenix Mars Lander has scooped up a soil sample from an intermediate depth between the ground surface and a subsurface icy layer and delivered it to a laboratory oven on the spacecraft.

The robotic arm on Phoenix collected the sample, dubbed "Burning Coals," from a trench named "Burn Alive 3." In part of the trench, the arm had dug down to the hard, icy layer about 4 centimeters (1.6 inches) below the ground surface. Next to that deeper part, it left a bench of material about 1 centimeter (0.4 inch) above the icy layer, and then collected about one-fourth to one-half a teaspoon of loose soil from that benchtop into the scoop.

Early Thursday, downlinked information from Phoenix confirmed to the mission's science and engineering team that the arm had delivered some of that sample through the doors and almost completely filled cell number 7 of the lander's Thermal and Evolved-Gas Analyzer (TEGA).

TEGA won't begin heating an oven until it senses that oven is full. So the science team will command the oven door to close and the cell will begin heating the sample to low temperature, to 35 degrees Celsius, or 95 degrees Fahrenheit. TEGA scientists have successfully sent commands for an oven to close manually before, they noted.

The purpose of the low temperature heating is to look for ice in the sample. The next step is a middle temperature heating process, which heats the sample to 125 degrees Celsius, or 257 degrees Fahrenheit. This step assures that the sample is dry. The last heating occurs at 1,000 degrees Celsius, or 1,832 degrees Fahrenheit. The gases given off during these heating stages helps the science team to determine the specific properties of the Martian soil.

"We are expecting the sample to look similar to previous samples," said William Boynton of The University of Arizona, lead scientist for TEGA. "One of the things we'll be looking for now is an oxygen release indicative of perchlorate."

Perchlorate was found in a sample delivered to Phoenix?s Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The MECA team saw the perchlorate signal in a sample taken from the Dodo-Goldilocks trench on June 25, or Sol 30, or the 30th Martian day of the mission after landing, and again in another sample taken from the Snow White trench on July 6, or Sol 41. Seeing signs of perchlorate in TEGA would help confirm the previous results.

The new sample completes a three-level soil profile that also includes a surface material from a trench called Rosy Red and ice-layer material from a trench called Snow White.

"We want to know the structure and composition of the soil at the surface, at the ice and in-between to help answer questions about the movement of water -- either as vapor or liquid -- between the icy layer and the surface," said Ray Arvidson of Washington University in St. Louis, a leader of Phoenix science team activities.

The Phoenix mission is led by Peter Smith of The University of Arizona with project management at the Jet Propulsion Laboratory and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>