Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mid-Depth Soil Collected for Lab Test on Phoenix Mars Lander

22.08.2008
NASA's Phoenix Mars Lander has scooped up a soil sample from an intermediate depth between the ground surface and a subsurface icy layer and delivered it to a laboratory oven on the spacecraft.

The robotic arm on Phoenix collected the sample, dubbed "Burning Coals," from a trench named "Burn Alive 3." In part of the trench, the arm had dug down to the hard, icy layer about 4 centimeters (1.6 inches) below the ground surface. Next to that deeper part, it left a bench of material about 1 centimeter (0.4 inch) above the icy layer, and then collected about one-fourth to one-half a teaspoon of loose soil from that benchtop into the scoop.

Early Thursday, downlinked information from Phoenix confirmed to the mission's science and engineering team that the arm had delivered some of that sample through the doors and almost completely filled cell number 7 of the lander's Thermal and Evolved-Gas Analyzer (TEGA).

TEGA won't begin heating an oven until it senses that oven is full. So the science team will command the oven door to close and the cell will begin heating the sample to low temperature, to 35 degrees Celsius, or 95 degrees Fahrenheit. TEGA scientists have successfully sent commands for an oven to close manually before, they noted.

The purpose of the low temperature heating is to look for ice in the sample. The next step is a middle temperature heating process, which heats the sample to 125 degrees Celsius, or 257 degrees Fahrenheit. This step assures that the sample is dry. The last heating occurs at 1,000 degrees Celsius, or 1,832 degrees Fahrenheit. The gases given off during these heating stages helps the science team to determine the specific properties of the Martian soil.

"We are expecting the sample to look similar to previous samples," said William Boynton of The University of Arizona, lead scientist for TEGA. "One of the things we'll be looking for now is an oxygen release indicative of perchlorate."

Perchlorate was found in a sample delivered to Phoenix?s Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The MECA team saw the perchlorate signal in a sample taken from the Dodo-Goldilocks trench on June 25, or Sol 30, or the 30th Martian day of the mission after landing, and again in another sample taken from the Snow White trench on July 6, or Sol 41. Seeing signs of perchlorate in TEGA would help confirm the previous results.

The new sample completes a three-level soil profile that also includes a surface material from a trench called Rosy Red and ice-layer material from a trench called Snow White.

"We want to know the structure and composition of the soil at the surface, at the ice and in-between to help answer questions about the movement of water -- either as vapor or liquid -- between the icy layer and the surface," said Ray Arvidson of Washington University in St. Louis, a leader of Phoenix science team activities.

The Phoenix mission is led by Peter Smith of The University of Arizona with project management at the Jet Propulsion Laboratory and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>