Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mid-Depth Soil Collected for Lab Test on Phoenix Mars Lander

22.08.2008
NASA's Phoenix Mars Lander has scooped up a soil sample from an intermediate depth between the ground surface and a subsurface icy layer and delivered it to a laboratory oven on the spacecraft.

The robotic arm on Phoenix collected the sample, dubbed "Burning Coals," from a trench named "Burn Alive 3." In part of the trench, the arm had dug down to the hard, icy layer about 4 centimeters (1.6 inches) below the ground surface. Next to that deeper part, it left a bench of material about 1 centimeter (0.4 inch) above the icy layer, and then collected about one-fourth to one-half a teaspoon of loose soil from that benchtop into the scoop.

Early Thursday, downlinked information from Phoenix confirmed to the mission's science and engineering team that the arm had delivered some of that sample through the doors and almost completely filled cell number 7 of the lander's Thermal and Evolved-Gas Analyzer (TEGA).

TEGA won't begin heating an oven until it senses that oven is full. So the science team will command the oven door to close and the cell will begin heating the sample to low temperature, to 35 degrees Celsius, or 95 degrees Fahrenheit. TEGA scientists have successfully sent commands for an oven to close manually before, they noted.

The purpose of the low temperature heating is to look for ice in the sample. The next step is a middle temperature heating process, which heats the sample to 125 degrees Celsius, or 257 degrees Fahrenheit. This step assures that the sample is dry. The last heating occurs at 1,000 degrees Celsius, or 1,832 degrees Fahrenheit. The gases given off during these heating stages helps the science team to determine the specific properties of the Martian soil.

"We are expecting the sample to look similar to previous samples," said William Boynton of The University of Arizona, lead scientist for TEGA. "One of the things we'll be looking for now is an oxygen release indicative of perchlorate."

Perchlorate was found in a sample delivered to Phoenix?s Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The MECA team saw the perchlorate signal in a sample taken from the Dodo-Goldilocks trench on June 25, or Sol 30, or the 30th Martian day of the mission after landing, and again in another sample taken from the Snow White trench on July 6, or Sol 41. Seeing signs of perchlorate in TEGA would help confirm the previous results.

The new sample completes a three-level soil profile that also includes a surface material from a trench called Rosy Red and ice-layer material from a trench called Snow White.

"We want to know the structure and composition of the soil at the surface, at the ice and in-between to help answer questions about the movement of water -- either as vapor or liquid -- between the icy layer and the surface," said Ray Arvidson of Washington University in St. Louis, a leader of Phoenix science team activities.

The Phoenix mission is led by Peter Smith of The University of Arizona with project management at the Jet Propulsion Laboratory and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>