Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaves Can Extract Water from Moon, Mars

07.10.2008
Research by material scientists may lead to the ability to extract water from the Moon and Mars by shooting microwave beams into their surface. Scientists at The University of Alabama in Huntsville and NASA are researching the use of microwaves to replenish water on space missions or as a rocket fuel supply.

When astronauts land on the Moon in the not too distant future, it’s possible they will be visiting an outpost where they can pick up some fuel and a refreshing container of liquid.

That outpost won’t be offering the 64-ounce Big Gulp soft drinks that you find at many of the convenience stores across the country, but it will be offering a critical commodity – water.

Research conducted by material scientists may lead to the ability to extract water from the Moon and possibly Mars by shooting microwave beams into their surface, according to Bill Kaukler, an Associate Research Professor in the Center for Materials Research at The University of Alabama in Huntsville.

“A lot of people think that water doesn’t exist on the Moon,” said Kaukler. “It’s true that not all parts of the Moon have water. Where the Apollo missions landed, there isn’t much water because it is exposed to the sun half of the time. However, in the polar regions, exploratory satellites have found huge amounts of hydrogen, which is evidence that water exists.”

Kaukler has performed research with NASA for more than 25 years and for the past three years has been investigating the use of microwaves to replenish water on space missions or as a rocket fuel supply.

The Moon’s surface is covered with over two meters deep of regolith (like soil), a layer of loose, powdery, heterogeneous material created by hundreds of millions of years of meteorite and comet bombardment. Below that covering lies bedrock. “Ice is just inches below the surface of the moon in craters at the poles (where solar heating doesn’t occur),” he said.

Kaukler and Marshall Space Flight Center scientist Edwin Ethridge have been conducting research on the use of microwaves to warm the lunar regolith to draw the water up to the surface.

“Using microwaves to heat the soil offers several advantages,” Kaukler said. “Microwaves are not strongly absorbed by the regolith (soil) so it can penetrate several feet into the soil and heat it.” Heating is possible because the Moon’s soil has about 5 percent iron, similar to volcanic rock on Earth, according to Kaukler. Microwave absorption is the most efficient method to heat large volumes of regolith or rock.

He said research shows that if the regolith can be warmed from a minus 150 degrees Celsius to minus 50 degrees, the vapor pressure of the water mixed in with the regolith particles is much higher than the Moon’s atmospheric pressure. Kaukler said the moon’s vacuum environment literally percolates the water vapor to the surface through the regolith particles. The water vapor collects on a cold (below minus 50 C) plate where it forms as ice and is scraped off for human consumption or where it can be converted by electrolysis to hydrogen and oxygen to be used as a fuel and oxidizer that can be used in space travel, like going to Mars.

The scientists have been confident of their research, but were encouraged by findings this summer when the Phoenix Mars lander confirmed the presence of water ice on the Martian surface. The lander scratched just two inches below the surface of Mars to expose the ice.

Kaukler, Ethridge and other materials scientists have developed a prototype and have used simulated lunar regolith to test their ideas. Their prototype has the power of one kilowatt, about the same as a typical home microwave oven.

What their experiments show is that they are able to remove 99 percent of water-ice through sublimation, or converting the frozen water directly into a gas, and could capture 95 percent of the liberated water.

While the one-kilowatt device may prove the concept, Kaukler said a 10-kilowatt unit would speed up the process of collecting water and make it more effective on the Moon’s surface. He envisions a robotic, roving device powered by a nuclear generator to roam the Moon’s surface in search of water sources.

Kaukler believes the concept of shooting microwave beams into the surface of the Moon or Mars to extract water offers several distinct advantages: not having to dig the regolith and put it into a furnace is a big advantage since heavy equipment won’t be needed; leaving the Moon essentially undisturbed is important; not worrying about the underlying geology is practical since hidden or buried rocks (that have no water) could damage digging equipment.

Perhaps the most important factor of this project is not carrying water on a journey, thus saving space and weight on long-distance trips. “This is the essence of the concept of In Situ Resource Utilization or ISRU, “ Kaukler said. “The philosophy is to use what is on the Moon (or Mars) to make habitats without having to bring the material from Earth.”

Another crucial factor is safety. The microwave process penetrates into the surface at least two meters deep, thus eliminating the need to dig into the surface to get to the ice, according to the scientists. Kaukler said the idea of kicking up dust by digging on the Moon poses a problem for equipment and astronauts if the abrasive dust finds its way into the wrong places, as it did for the Apollo astronauts.

Research continues, according to Kaukler. More investigation is necessary to learn about the electromagnetic properties of regolith in the various microwave frequencies. Altering those frequencies could allow the device to penetrate deeper into the surface if necessary to reach additional water.

Kaukler and Ethridge are also exploring the use of microwaves for melting or sintering the regolith to make structures on the Moon.

An important concept they developed was the use of microwave melting of the regolith surface to make a dust-free crust. Such surfaces have uses as a landing pad (no dust kicked around the landing site by rockets), working surfaces to stabilize equipment and floors or roadways for astronauts to live and travel on. Conventional bricks, blocks or walls can also be prepared this way without bringing adhesives or special cements to Moon.

Ray Garner | Newswise Science News
Further information:
http://www.uah.edu

Further reports about: Apollo Crater Mars Microwave Moon NASA Oxygen space travel volcanic rock

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>