Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microwaves Can Extract Water from Moon, Mars

Research by material scientists may lead to the ability to extract water from the Moon and Mars by shooting microwave beams into their surface. Scientists at The University of Alabama in Huntsville and NASA are researching the use of microwaves to replenish water on space missions or as a rocket fuel supply.

When astronauts land on the Moon in the not too distant future, it’s possible they will be visiting an outpost where they can pick up some fuel and a refreshing container of liquid.

That outpost won’t be offering the 64-ounce Big Gulp soft drinks that you find at many of the convenience stores across the country, but it will be offering a critical commodity – water.

Research conducted by material scientists may lead to the ability to extract water from the Moon and possibly Mars by shooting microwave beams into their surface, according to Bill Kaukler, an Associate Research Professor in the Center for Materials Research at The University of Alabama in Huntsville.

“A lot of people think that water doesn’t exist on the Moon,” said Kaukler. “It’s true that not all parts of the Moon have water. Where the Apollo missions landed, there isn’t much water because it is exposed to the sun half of the time. However, in the polar regions, exploratory satellites have found huge amounts of hydrogen, which is evidence that water exists.”

Kaukler has performed research with NASA for more than 25 years and for the past three years has been investigating the use of microwaves to replenish water on space missions or as a rocket fuel supply.

The Moon’s surface is covered with over two meters deep of regolith (like soil), a layer of loose, powdery, heterogeneous material created by hundreds of millions of years of meteorite and comet bombardment. Below that covering lies bedrock. “Ice is just inches below the surface of the moon in craters at the poles (where solar heating doesn’t occur),” he said.

Kaukler and Marshall Space Flight Center scientist Edwin Ethridge have been conducting research on the use of microwaves to warm the lunar regolith to draw the water up to the surface.

“Using microwaves to heat the soil offers several advantages,” Kaukler said. “Microwaves are not strongly absorbed by the regolith (soil) so it can penetrate several feet into the soil and heat it.” Heating is possible because the Moon’s soil has about 5 percent iron, similar to volcanic rock on Earth, according to Kaukler. Microwave absorption is the most efficient method to heat large volumes of regolith or rock.

He said research shows that if the regolith can be warmed from a minus 150 degrees Celsius to minus 50 degrees, the vapor pressure of the water mixed in with the regolith particles is much higher than the Moon’s atmospheric pressure. Kaukler said the moon’s vacuum environment literally percolates the water vapor to the surface through the regolith particles. The water vapor collects on a cold (below minus 50 C) plate where it forms as ice and is scraped off for human consumption or where it can be converted by electrolysis to hydrogen and oxygen to be used as a fuel and oxidizer that can be used in space travel, like going to Mars.

The scientists have been confident of their research, but were encouraged by findings this summer when the Phoenix Mars lander confirmed the presence of water ice on the Martian surface. The lander scratched just two inches below the surface of Mars to expose the ice.

Kaukler, Ethridge and other materials scientists have developed a prototype and have used simulated lunar regolith to test their ideas. Their prototype has the power of one kilowatt, about the same as a typical home microwave oven.

What their experiments show is that they are able to remove 99 percent of water-ice through sublimation, or converting the frozen water directly into a gas, and could capture 95 percent of the liberated water.

While the one-kilowatt device may prove the concept, Kaukler said a 10-kilowatt unit would speed up the process of collecting water and make it more effective on the Moon’s surface. He envisions a robotic, roving device powered by a nuclear generator to roam the Moon’s surface in search of water sources.

Kaukler believes the concept of shooting microwave beams into the surface of the Moon or Mars to extract water offers several distinct advantages: not having to dig the regolith and put it into a furnace is a big advantage since heavy equipment won’t be needed; leaving the Moon essentially undisturbed is important; not worrying about the underlying geology is practical since hidden or buried rocks (that have no water) could damage digging equipment.

Perhaps the most important factor of this project is not carrying water on a journey, thus saving space and weight on long-distance trips. “This is the essence of the concept of In Situ Resource Utilization or ISRU, “ Kaukler said. “The philosophy is to use what is on the Moon (or Mars) to make habitats without having to bring the material from Earth.”

Another crucial factor is safety. The microwave process penetrates into the surface at least two meters deep, thus eliminating the need to dig into the surface to get to the ice, according to the scientists. Kaukler said the idea of kicking up dust by digging on the Moon poses a problem for equipment and astronauts if the abrasive dust finds its way into the wrong places, as it did for the Apollo astronauts.

Research continues, according to Kaukler. More investigation is necessary to learn about the electromagnetic properties of regolith in the various microwave frequencies. Altering those frequencies could allow the device to penetrate deeper into the surface if necessary to reach additional water.

Kaukler and Ethridge are also exploring the use of microwaves for melting or sintering the regolith to make structures on the Moon.

An important concept they developed was the use of microwave melting of the regolith surface to make a dust-free crust. Such surfaces have uses as a landing pad (no dust kicked around the landing site by rockets), working surfaces to stabilize equipment and floors or roadways for astronauts to live and travel on. Conventional bricks, blocks or walls can also be prepared this way without bringing adhesives or special cements to Moon.

Ray Garner | Newswise Science News
Further information:

Further reports about: Apollo Crater Mars Microwave Moon NASA Oxygen space travel volcanic rock

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>