Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microtechnology: Miniature magnetic switches

15.04.2011
An electromechanical switch using a single magnetic plate delivers superior performance in a tiny package

Transistors are commonly used in electronics as switches to turn an electrical current on or off. For applications that require a very large ratio between the on and off current, however, it is necessary to use mechanical ‘reed’ switches, in which magnetic fields physically move metallic wires (or reeds) towards and away from electrical contact points. As devices become more compact, these mechanical switches need to be miniaturized into small packages, without sacrificing performance.

Min Tang and co-workers at the A*STAR Institute of Microelectronics[1] have now demonstrated a high-performance, ultra-compact version of the mechanical magnetic switch (pictured). Their device consists of a magnetic plate supported by two torsion bars, one on each side. The plate is made from a soft magnetic material of 80% nickel and 20% iron, and is patterned into long, narrow strips. When a magnet is brought close to the device, the strips align with the direction of the magnetic field, tilting the plate down to establish electrical contact between two gold pads. When the magnetic field is released, the torsion bars tilt the plate back to its original position, breaking the electrical contact with the gold pads.

Tang and her co-workers maximized the response of the plate to the magnetic field by choosing appropriate lengths, widths and thicknesses for the strips. This allowed them to use a smaller magnet to actuate the device, which in turn reduced the overall size and power consumption of the switch. The researchers were able to reduce the required magnetic field to 4.8 milliteslas, or about half the field strength required in previous designs. Despite the modest magnetic field strength, they could repeatedly form a reliable electrical connection between the plate and electrical contacs with an on resistance as low as 0.5 ohms and a switching time of close to 2 milliseconds.

The fabrication requirements for this novel switch are particularly simple because the device consists of a single magnetic plate, whereas previous designs require two. This helps in achieving a small footprint of about four square millimeters. Importantly, the researchers demonstrated that the switch has excellent lifetime characteristics of 34 million switching cycles, and strong shock resistance of greater than 500 g. These characteristics make the switch suitable for a variety of personal electronics applications, including laptops, cellular phones and personal data assistants, as well as medical devices like hearing aids and pacemakers. The researchers’ next step is to develop a hermetically sealed package for the switch to support such applications.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Tang, M. et al. A magnetostatic MEMS switch designed for portable applications. Journal of Microelectromechanical Systems 19, 1131–1139 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6305
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>