Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microtechnology: Miniature magnetic switches

An electromechanical switch using a single magnetic plate delivers superior performance in a tiny package

Transistors are commonly used in electronics as switches to turn an electrical current on or off. For applications that require a very large ratio between the on and off current, however, it is necessary to use mechanical ‘reed’ switches, in which magnetic fields physically move metallic wires (or reeds) towards and away from electrical contact points. As devices become more compact, these mechanical switches need to be miniaturized into small packages, without sacrificing performance.

Min Tang and co-workers at the A*STAR Institute of Microelectronics[1] have now demonstrated a high-performance, ultra-compact version of the mechanical magnetic switch (pictured). Their device consists of a magnetic plate supported by two torsion bars, one on each side. The plate is made from a soft magnetic material of 80% nickel and 20% iron, and is patterned into long, narrow strips. When a magnet is brought close to the device, the strips align with the direction of the magnetic field, tilting the plate down to establish electrical contact between two gold pads. When the magnetic field is released, the torsion bars tilt the plate back to its original position, breaking the electrical contact with the gold pads.

Tang and her co-workers maximized the response of the plate to the magnetic field by choosing appropriate lengths, widths and thicknesses for the strips. This allowed them to use a smaller magnet to actuate the device, which in turn reduced the overall size and power consumption of the switch. The researchers were able to reduce the required magnetic field to 4.8 milliteslas, or about half the field strength required in previous designs. Despite the modest magnetic field strength, they could repeatedly form a reliable electrical connection between the plate and electrical contacs with an on resistance as low as 0.5 ohms and a switching time of close to 2 milliseconds.

The fabrication requirements for this novel switch are particularly simple because the device consists of a single magnetic plate, whereas previous designs require two. This helps in achieving a small footprint of about four square millimeters. Importantly, the researchers demonstrated that the switch has excellent lifetime characteristics of 34 million switching cycles, and strong shock resistance of greater than 500 g. These characteristics make the switch suitable for a variety of personal electronics applications, including laptops, cellular phones and personal data assistants, as well as medical devices like hearing aids and pacemakers. The researchers’ next step is to develop a hermetically sealed package for the switch to support such applications.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Tang, M. et al. A magnetostatic MEMS switch designed for portable applications. Journal of Microelectromechanical Systems 19, 1131–1139 (2010).

Lee Swee Heng | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>