Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microtechnology: An alignment assignment

21.01.2011
Photonics and microelectromechanical systems fabricated separately on different wafers can now be aligned precisely by finishing with a single processing step

Microelectromechanical systems (MEMS), which consist of tiny moving parts driven by electrical signals, have found ready applications in optical communication systems. They are attractive in part because they can be integrated with other electrical and optical components to create a multifunctional device in a single package, which reduces fabrication costs and allows for greater performance. However, this integration requires precise alignment of the constituent parts in order to avoid signal loss.

One approach to achieve accurate alignment is to manufacture both the optical MEMS components and any other electronic or photonic components on the same silicon wafer. Optical MEMS devices, however, are often ten times thicker than other optical components. This means that different fabrication techniques are needed for the different components, making alignment difficult.

Another approach is to fabricate MEMS and electrical components on two separate wafers that are then bonded together. Achieving good alignment in this scheme is made difficult, however, by the coarse bonding processes that are available. Qingxin Zhang and co-workers at the A*STAR Institute of Microelectronics[1] have now refined the two-wafer approach by combining the final fabrication step for each component into a single process.

The research team aligned an optical MEMS structure with a silicon photonic structure (see figure). The two wafers bearing the respective components were processed independently in the first step: the MEMS structure was fabricated on a bulk silicon wafer and the photonic structure on a silicon-on-insulator wafer. The wafers were then bonded together using benzocyclobutene—a commonly used bonding agent for MEMS—at 250 °C, and the two structures were completed simultaneously using a single step of deep reactive ion etching.

The use of a single fabrication step to complete the final integrated device allowed Zhang and his co-workers to meet strict alignment specifications, achieving a misalignment of less than one micrometer laterally and less than half a micrometer vertically. They also used their strategy to construct and characterize a functioning optical switch in which a MEMS mirror is displaced by a driving voltage to connect and disconnect an optical pathway. The signal loss between a source optical fiber and the silicon waveguide in the device was just 2.4 decibels, which is well within acceptable limits.

The new approach allows scientists to merge photonic and MEMS components fabricated on two different wafers into a single device. Future work will focus on optimizing the MEMS design and fabrication process, and demonstrating reconfigurability.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Zhang, Q. et al. A two-wafer approach for integration of optical MEMS and photonics on silicon substrate. IEEE Photonics Technology Letters 22, 269–271 (2010).

Lee Swee Heng | Research Asia Research News
Further information:
http://www.research.a-star.edu.sg/research/6267

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>