Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopy: A glance from the nanoworld

08.06.2012
New patterning technique produces a faithful reproduction of grayscale images down to the micrometer level
In his 1959 lecture There's Plenty of Room at the Bottom, the US physicist Richard Feynman asked the question: “Why cannot we write the entire 24 volumes of the Encyclopaedia Britannica on the head of a pin?” Since then, scientists have made great advances in the nascent field of nanotechnology — and among them, the reading and writing of features at the atomic scale.

Current techniques for patterning features at the atomic scale, however, have been limited by their ability to replicate colors or grayscale information. Joel Yang at the A*STAR Institute of Materials Research and Engineering and co-workers1 have now developed a patterning technique that produces a faithful reproduction of grayscale images with accuracy down to tens of micrometers.

Conventional micro-patterning techniques typically build on halftone printing, whereby the brightness of the image is generated by varying the density of monochromatic elements. Yang’s technique considers these elements as ‘nanoposts’ — posts of only ten nanometers in size — that are arranged in one of 17 possible patterns or ‘shades’. It then produces faithful reproductions of grayscale images using these 17 shades in hand.

As a proof of principle, the researchers replicated the patterns of a test image (pictured) onto an area of 40 square micrometers. In the densest region, the separation between individual dots was a mere 10 nanometers.

The halftone technique had been used before to create grayscale optical micrographs. However, Yang and colleagues have now pushed the approach into the realm of electron microscopy: “Our technique utilizes an electron-beam-lithography method with one of the best resolutions, allowing us to create grayscale images that are highly miniaturized,” explains Yang. “The method should be useful for creating images that can be seen under an optical microscope and may open up new avenues to adding colors to images.”

Yang and his team envisioned several uses of the miniaturized images, for example, in anti-counterfeit features to nanophotonic devices. “But above all, these are striking images,” says Yang. Indeed, one of the images — a 4000-fold miniaturization of M. C. Escher’s mezzotint Dewdrop — has won last year’s Grand Prize Award of the International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (EIPBN) conference. "Winning that award was a thrilling experience especially as it was presented by a community of nanofabrication experts", says Yang. "One who stares enough into the screen of a scanning electron microscope would appreciate the intrigue and aesthetic beauty of these micrographs. It is rare to see a scanning-electron-microscope image of a photo-realistic person staring back at you from the nanoworld."

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering
Associated links
http://www.research.a-star.edu.sg/research/6503
Journal information
Yang, J. K. W., Duan, H., Law, J. B. K. , Low, H. Y. & Cord, B. Miniaturization of grayscale images. Journal of Vacuum Science and Technology B 29, 06F313 (2011). |

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>