Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic structure of quantum gases made visible

20.10.2008
Physicists of Mainz University have first managed to plot the distribution of individual gases in the Bose-Einstein condensate / Published in Nature Physics

Scientists at the Johannes Gutenberg University Mainz have, for the first time, succeeded in rendering the spatial distribution of individual atoms in a Bose-Einstein condensate visible. Bose-Einstein condensates are small, ultracold gas clouds which, due to their low temperatures, can no longer be described in terms of traditional physics but must be described using the laws of quantum mechanics. The first Bose-Einstein condensates were generated in 1995 by Eric A. Cornell, Carl E. Wieman and Wolfgang Ketterle, who received the Nobel Prize in Physics for their work only six years later. Since then, these unique gas clouds, the coldest objects humans ever created, have become a global research object.

Physicists working with Dr Herwig Ott in the study group for quantum, atomic and neutron physics (QUANTUM) at Mainz University have now developed a new tech-nology that can be used to plot the individual atoms in a Bose-Einstein condensate. In addition, the spatial resolution achieved during plotting far exceeds any previous methods used. The research results of the Emmy Noether Independent Junior Research Group, sponsored by the German Research Foundation (DFG), were published in the professional journal Nature Physics under the title of "High-resolution scanning electron microscopy of an ultracold quantum gas".

This breakthrough was possible due to the use of a high-resolution scanning elec-tron microscope that makes use of a very fine electron beam to scan the ultracold atomic cloud, thus rendering even the smallest structures visible. "The transfer of this technology to ultracold gases was a technical risk," reports Dr Herwig Ott, head of the Emmy Noether Junior Research Group, "as two different techniques had to be combined." Moreover, atoms and molecules move completely freely and ran-domly in gases unlike they do in solids. Another advantage of this highly advanced microscopy process is the better spatial resolution compared with optical processes where the resolution capacity is limited by the wavelength of the light used. "With a resolution of 150 nm, we are able to view these quantum objects with an accuracy that is 10 times higher than has been possible to date," explains Ott.

As electron microscopy made previously unknown parts of our world visible to the viewer, so the technology developed in Mainz has opened up unique possibilities for investigating the microscopic structure of quantum gases. The physicists in Mainz have already reached their first major milestone: They managed to make the structure of a so-called optical lattice visible. Optical lattices are interference patterns comprised of laser beams, which are shone onto the atomic cloud and force their periodic structure onto it. This results in the creation of crystal-like formations. The interesting aspect is that the movement of the atoms in an optical lattice within a quantum gas is similar to the behavior of electrons in solid bodies. Quantum gases are thus able to simulate the physical properties of solid bodies and can therefore also contribute to answering outstanding questions in solid-state physics.

Petra Giegerich | alfa
Further information:
http://www.uni-mainz.de
http://www.quantum.physik.uni-mainz.de/ ; http://www.nature.com/doifinder/10.1038/nphys1102

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>