Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscope might see beneath skin in 4-D

30.08.2011
A new type of laser scanning confocal microscope (LSCM) holds the promise of diagnosing skin cancer in a single snapshot.

Typical LSCMs take 3-D images of thick tissue samples by visualizing thin slices within that tissue one layer at a time. Sometimes scientists supplement these microscopes with spectrographs, which are devices that measure the pattern of wavelengths, or "colors," in the light reflected off of a piece of tissue.

This pattern of wavelengths acts like a fingerprint, which scientists can use to identify a particular substance within the sample. But the range of wavelengths used so far with these devices has been narrow, limiting their uses. Not so with the new microscope developed by physicists from the Consiglio Nazionale delle Ricerche (CNR) in Rome, and described in a paper accepted to the AIP's new journal AIP Advances.

Unlike other combination "confocal microscope plus spectrograph" devices, the new machine is able to gather the spectrographic information from every point in a sample, at a wide range of wavelengths, and in a single scan. To achieve this, the authors illuminate the sample with multiple colors of laser light at once – a sort of "laser rainbow" – that includes visible light as well as infrared. This allows scientists to gather a full range of information about the wavelengths of light reflected off of every point within the sample.

Using this method, the researchers took high-resolution pictures of the edge of a silicon wafer and of metallic letters painted onto a piece of silicon less than half a millimeter wide. They also demonstrated that it is possible to apply this technique to a tissue sample (in this case, chicken skin) without destroying it. With further testing, the researchers say the microscope could be used to detect early signs of melanoma; until then, it may be useful for non-medical applications, such as inspecting the surface of semiconductors.

Article: "Supercontinuum ultra wide range confocal microscope for reflectance spectroscopy of living matter and material science surfaces" is published in AIP Advances.

Authors: Stefano Selci (1), Francesca R. Bertani (1), and Luisa Ferrari (1).

(1) Instituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Rome

Jennifer Lauren Lee | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Could a particle accelerator using laser-driven implosion become a reality?
24.05.2018 | Osaka University

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>