Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial Life on Mars: Could Saltwater Make It Possible?

22.08.2011
How common are droplets of saltwater on Mars? Could microbial life survive and reproduce in them? A new million-dollar NASA project led by the University of Michigan aims to answer those questions.

This project begins three years after beads of liquid brine were first photographed on one of the Mars Phoenix lander's legs.

"On Earth, everywhere there's liquid water, there is microbial life," said Nilton Renno, a professor in the Department of Atmospheric, Oceanic and Space Sciences who is the principal investigator. Researchers from NASA, the University of Texas at Dallas, the University of Georgia and the Centro de Astrobiologia in Madrid are also involved.

Scientists in the United States will create Mars conditions in lab chambers and study how and when brines form. These shoe-box-sized modules will have wispy carbon dioxide and water vapor atmospheres with 99 percent lower air pressure than the average pressure on Earth at sea level. Temperatures will range from -100 to -80 Fahrenheit and will be adjusted to mimic daily and seasonal cycles. Instruments will alert the researchers to the formation of brine pockets, which could potentially be habitable by certain forms of microbial life.

Their colleagues overseas will seed similar chambers with salt-loving "extremophile" microorganisms from deep in Antarctic lakes and the Gulf of Mexico. The will observe whether these organisms survive, grow and reproduce in brines just below the surface of the soil. All known forms of life need liquid water to live. But microbes don't need much. A droplet or a thin film could suffice, researchers say.

"If we find microbes that can survive and replicate in brines at Mars conditions, we would have demonstrated that microbes could exist on Mars today," Renno said.

With his colleagues on the Mars Phoenix mission in 2008, Renno theorized that globules that moved and coalesced on the spacecraft's leg were liquid saltwater. Independent physical and thermodynamic evidence as well as follow-up experiments have confirmed that the drops were liquid and not frost or ice. The Phoenix photos are believed to be the first pictures of liquid water outside the Earth.

The median temperature at the Phoenix landing site was -70 degrees Fahrenheit during the mission---too cold for liquid fresh water. But "perchlorate" salts found in the site's soils could lower water's freezing point dramatically, so that it could exist as liquid brine. The salts are also capable of absorbing water from the atmosphere in a process called deliquescence.

Also contributing to this new project at U-M are Bruce Block, a senior engineer in the Space Physics Research Lab and Gregory Dick, an assistant professor in the Department of Geological Sciences.

For more information:

Video: Nilton Renno describes this project: http://www.youtube.com/watch?v=3Q8yEt1Sugg

Nilton Renno: http://aoss.engin.umich.edu/people/nrenno

Michigan Engineer magazine: Revisiting Mars---The search for life and liquid water on the planet next door: http://www.engin.umich.edu/newscenter/pubs/engineer/engineerfeatures/wateronmars

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>