Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first metropolitan quantum cryptography network will be available in Spain by 2010

18.11.2008
Researchers from the Department of Languages and Systems and Software Engineering at the Universidad Politécnica de Madrid’s School of Computing have developed a prototype metropolitan quantum key distribution network that will be ready for deployment by Telefónica on any Spanish urban telecommunications network by 2010.

The group researching this quantum cryptography network are members of the Quantum Computing and Information Research Group based at the School of Computing, led by Vicente Martín and of the Department of Network and Services Security at Telefónica I + D.

The prototype is being developed as part of the CENIT-SEGUR@ - Security and Confidence in the Information Society research and development project. The project partners form a consortium of twelve companies and fifteen public research institutions, including the UPM’s School of Computing, led by Telefónica I + D. The project has a budget of 31 million euros.

The aim of this project is to light the way towards a new generation of integral security solutions, capable of dealing with the telecommunications security risks now threatening conventional networks.

New security

The security of conventional public key cryptography methods is founded on the confidence that an attacker does not have computing power or mathematical knowledge enough to decrypt the. But these methods are becoming less secure as computing power increases and mathematical methods grow in sophistication.

Quantum key distribution depends on quantum mechanics and provides completely different ways of generating cryptographic keys, that are the building blocks of many security schemes, reaching unprecedented security levels.

Using a complex protocol, a sender and a receiver exchange a series of qubits encoded in photons. This way, they can agree on a highly secure and virtually unbreakable key, because, according to the principles of quantum physics, any attempt at intercepting a qubit would be detected by the receiver, making for confidential information exchange.

A qubit (from quantum bit) is the minimum and therefore basic unit of quantum information. Quantum key distribution technology uses individual photons or qubits over optical fibre, free space or even satellite links.

On any network

The metropolitan quantum key distribution network developed by the CENIT SEGUR@'s team of researchers, composed of physicists, computer scientists, telecommunications engineers and mathematicians, can coexist with traditional communication networks. In actual fact, this is its main advantage. The network already has all its key components and has successfully passed its first experimental tests.

At present there are only three networks like this in the world, and the metropolitan quantum network developed at the UPM’s School of Computing is the only network offering direct links to end users by including technology also for the access segment. Also it will be made compliant with the standards on networked quantum devices, that are being developed at the European Telecommunication Standards Institute andin the definition of which the UPM’s School of Computing team is also participating.

This social application of the quantum key distribution network has been achieved by developing a number of protocols enabling its deployment on conventional telecommunications networks, without the use of these networks affecting qubit circulation.

Although this technology was first proposed in the 1980s, there is now a second generation of quantum key distribution devices, with several prototypes on the market.

Third generation

The main aim of the metropolitan quantum key distribution network developed at the UPM’s School of Computing is to overcome the current limitation of point-to-point links and non-shared fibersand make it available to small and medium-sized enterprises and even multiple end users through the shared use of the communications infrastructure.

The prototype intends to structure a quantum key distribution network using a metropolitan ring and serving a number of end users through an access network, that will use quantum links on the conventional network infrastructure.

Although the current telecommunications network is generally based mainly on copper, Telefónica is now deploying a new passive optical fibre network that will allow qubit transmissions. The qubits will coexist with but not interfere with the conventional telecommunications photons.

The fundaments of this research were presented at the quantum networks conference held at Vienna a month ago as part of the European SECOQC project. The presentation focused on the feasibility of quantum key distribution data transmission over a commercial telecommunications network.

Eduardo Martínez | alfa
Further information:
http://www.fi.upm.es/?pagina=781&idioma=english
http://www.fi.upm.es

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>