Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first metropolitan quantum cryptography network will be available in Spain by 2010

18.11.2008
Researchers from the Department of Languages and Systems and Software Engineering at the Universidad Politécnica de Madrid’s School of Computing have developed a prototype metropolitan quantum key distribution network that will be ready for deployment by Telefónica on any Spanish urban telecommunications network by 2010.

The group researching this quantum cryptography network are members of the Quantum Computing and Information Research Group based at the School of Computing, led by Vicente Martín and of the Department of Network and Services Security at Telefónica I + D.

The prototype is being developed as part of the CENIT-SEGUR@ - Security and Confidence in the Information Society research and development project. The project partners form a consortium of twelve companies and fifteen public research institutions, including the UPM’s School of Computing, led by Telefónica I + D. The project has a budget of 31 million euros.

The aim of this project is to light the way towards a new generation of integral security solutions, capable of dealing with the telecommunications security risks now threatening conventional networks.

New security

The security of conventional public key cryptography methods is founded on the confidence that an attacker does not have computing power or mathematical knowledge enough to decrypt the. But these methods are becoming less secure as computing power increases and mathematical methods grow in sophistication.

Quantum key distribution depends on quantum mechanics and provides completely different ways of generating cryptographic keys, that are the building blocks of many security schemes, reaching unprecedented security levels.

Using a complex protocol, a sender and a receiver exchange a series of qubits encoded in photons. This way, they can agree on a highly secure and virtually unbreakable key, because, according to the principles of quantum physics, any attempt at intercepting a qubit would be detected by the receiver, making for confidential information exchange.

A qubit (from quantum bit) is the minimum and therefore basic unit of quantum information. Quantum key distribution technology uses individual photons or qubits over optical fibre, free space or even satellite links.

On any network

The metropolitan quantum key distribution network developed by the CENIT SEGUR@'s team of researchers, composed of physicists, computer scientists, telecommunications engineers and mathematicians, can coexist with traditional communication networks. In actual fact, this is its main advantage. The network already has all its key components and has successfully passed its first experimental tests.

At present there are only three networks like this in the world, and the metropolitan quantum network developed at the UPM’s School of Computing is the only network offering direct links to end users by including technology also for the access segment. Also it will be made compliant with the standards on networked quantum devices, that are being developed at the European Telecommunication Standards Institute andin the definition of which the UPM’s School of Computing team is also participating.

This social application of the quantum key distribution network has been achieved by developing a number of protocols enabling its deployment on conventional telecommunications networks, without the use of these networks affecting qubit circulation.

Although this technology was first proposed in the 1980s, there is now a second generation of quantum key distribution devices, with several prototypes on the market.

Third generation

The main aim of the metropolitan quantum key distribution network developed at the UPM’s School of Computing is to overcome the current limitation of point-to-point links and non-shared fibersand make it available to small and medium-sized enterprises and even multiple end users through the shared use of the communications infrastructure.

The prototype intends to structure a quantum key distribution network using a metropolitan ring and serving a number of end users through an access network, that will use quantum links on the conventional network infrastructure.

Although the current telecommunications network is generally based mainly on copper, Telefónica is now deploying a new passive optical fibre network that will allow qubit transmissions. The qubits will coexist with but not interfere with the conventional telecommunications photons.

The fundaments of this research were presented at the quantum networks conference held at Vienna a month ago as part of the European SECOQC project. The presentation focused on the feasibility of quantum key distribution data transmission over a commercial telecommunications network.

Eduardo Martínez | alfa
Further information:
http://www.fi.upm.es/?pagina=781&idioma=english
http://www.fi.upm.es

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>