Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method separates cancer cells from normal cells

17.06.2009
The vast majority of cancer deaths are due to metastasis, the spread of cancer cells from its primary site to other parts of the body.

These metastatic cells tend to move more than their non-metastatic variants but this movement is poorly understood. Scientists are studying cancer cells intently with the hope they can learn to control the movements of the dangerous cells.

Northwestern University researchers now have demonstrated a novel and simple method that can direct and separate cancer cells from normal cells. Based on this method, they have proposed that cancer cells possibly could be sequestered permanently in a sort of "cancer trap" made of implantable and biodegradable materials.

The demonstrated device, which takes advantage of a physical principle called ratcheting, is a very tiny system of channels for cell locomotion. Each channel is less than a tenth of a millimeter wide. The asymmetric obstacles inside these channels direct cell movement along a preferred direction.

Details are published online by the journal Nature Physics.

"We have demonstrated a principle that offers an unconventional way to fight metastasis, a very different approach from other methods, such as chemotherapy," said Bartosz Grzybowski, the paper's senior author. "These are fundamental studies so the method needs to be optimized, but the idea has promise for a new approach to cancer therapy."

Grzybowski is associate professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science and associate professor of chemistry in the Weinberg College of Arts and Sciences.

The researchers first discovered they could design channels of different geometries -- some a series of connected triangles -- through which cells can move in a single direction. (Live mammalian melanoma, breast cancer and normal cells were studied.)

To create the channels, the researchers patterned cell-adhesive and cell-repellant chemical compounds onto a substrate. The cells stayed out of the repellant areas and localized onto the "ratchet" channels, which then directed the cells' movements.

Grzybowski and his colleagues took this knowledge one critical step farther: they designed channels that successfully moved the cells of two types -- notably, cancerous and non-cancerous -- in opposite directions and thus partly sorted them out.

To sort the cells, they took advantage of the cells' different shapes and mobility characteristics. Migrating cancer cells tend to be more round and broad while normal, epithelial cells are long and thin with long protrusions on the ends. The researchers designed a channel with "spikes" coming out at 45-degree angles from the walls, alternating on opposite sides of the channel. This pattern funnels cancer cells in one direction while at the same time directing the normal cells in the opposite direction, as those cells "grab" the spikes and pull themselves through.

The researchers showed that a device with a number of these channels leading to a central reservoir, like spokes on a wheel, worked just as well separating cancer and non-cancerous cells. A stack of these radially arranged ratchet channels could be used to create a "cancer trap."

"When implanted next to a tumor the particles would guide cancer cells, but not normal cells, inward to the reservoir, where they would be trapped," said Grzybowski. "The particles could also be part of the sutures used during surgical procedures."

The Nature Physics paper is titled "Directing Cell Motions on Micropatterned Ratchets." In addition to Grzybowski, the paper's other authors are Goher Mahmud, Christopher J. Campbell, Kyle J. M. Bishop, Yulia A. Komarova, Oleg Chaga, Siowling Soh, Sabil Huda and Kristiana Kandere-Grzybowska.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>