Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method proposed for detecting gravitational waves from ends of universe

17.05.2013
University of Nevada, Reno researcher proposes new approach to fill missing piece of Einstein's theory

A new window into the nature of the universe may be possible with a device proposed by scientists at the University of Nevada, Reno and Stanford University that would detect elusive gravity waves from the other end of the cosmos. Their paper describing the device and process was published in the prestigious physics journal Physical Review Letters.

"Gravitational waves represent one of the missing pieces of Einstein's theory of general relativity," Andrew Geraci, University of Nevada, Reno physics assistant professor, said. "While there is a global effort already out there to find gravitational waves, our proposed method is an alternate approach with greater sensitivity in a significantly smaller device.

"Our detector is complementary to existing gravitational wave detectors, in that it is more sensitive to sources in a higher frequency band, so we could see signals that other detectors might potentially miss."

Geraci and his colleague Asimina Arvanitaki, a post-doctoral fellow in the physics department at Stanford University, propose using a small, laser-cooled, tunable sensor that "floats" in an optical cavity so it is not affected by friction. Geraci is seeking funding to begin building a small prototype in the next year.

"Gravity waves propagate from the remote corners of our universe, they stretch and squeeze the fabric of space-time," Geraci said. "A passing gravity wave changes the physically measured distance between two test masses – small discs or spheres. In our approach, such a mass experiences minimal friction and therefore is very sensitive to small forces."

While indirect evidence for gravity waves was obtained by studying the changing orbital period of a neutron star binary, resulting in the 1993 Nobel Prize in Physics, gravity waves have yet to be directly observed.

"Directly detecting gravitational waves from astrophysical sources enables a new type of astronomy, which can give us "pictures" of the sky analogous to what we have by using telescopes," Geraci said. "In this way the invention of a gravitational wave detector, which lets us "see" the universe through gravity waves, is analogous to the invention of the telescope, which let us see the universe using light. Having such detectors will allow us to learn more about astrophysical objects in our universe, such as black holes."

The approach the authors describe can exceed the sensitivity of next-generation gravitational wave observatories by up to an order of magnitude in the frequency range of 50 to 300 kilohertz.

Their paper, "Detecting high-frequency gravitational waves with optically levitated sensors," appeared in Physical Review Letters, a publication of the physics organization American Physical Society.

Geraci also presented his research at the annual American Physical Society Meeting in Denver in April. The meeting is attended by particle physicists, nuclear physicists and astrophysicists to share new research results and insights.

Physical Review Letters is the world's foremost physics letters journal, providing rapid publication of short reports of significant fundamental research in all fields of physics. The international journal provides its diverse readership with weekly coverage of major advances in physics and cross disciplinary developments.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of 18,000 students and is ranked in the top tier of the nation's best universities. Part of the Nevada System of Higher Education, the University has the system's largest research program and is home to the state's medical school. With outreach and education programs in all Nevada counties and with one of the nation's largest study-abroad consortiums, the University extends across the state and around the world. For more information, visit http://www.unr.edu.

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>