Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Offers Control of Strain on Graphene Membranes

04.04.2012
First controllable use of scanning tunneling microscopy on freestanding graphene

Graphene could be the superhero of materials – it’s light, strong and conducts heat and electricity effectively, which makes it a great material for potential use in all kinds of electronics. And because it’s made from carbon atoms, graphene is cheap and plentiful. Its electric and mechanical properties also affect one another in unique ways. But before freestanding graphene can live up to its potential, scientists need to be able to control these properties.

A group of physicists from the University of Arkansas and other institutions have developed a technique that allows them to control the mechanical property, or strain, on freestanding graphene, sheets of carbon one-atom thick suspended over the tops of tiny squares of copper. By controlling the strain on freestanding graphene, they also can control other properties of this important material.

“If you subject graphene to strain, you change its electronic properties,” said physics professor Salvador Barraza-Lopez. Strain on freestanding graphene causes the material to behave as if it is in a magnetic field, even though no magnets are present, a property that scientists will want to exploit -- if they can control the mechanical strain.

To control the mechanical strain, University of Arkansas researchers developed a new experimental approach. Physicists Peng Xu, Paul Thibado and students in Thibado’s group examined freestanding graphene membranes stretched over thin square “crucibles,” or meshes, of copper. They performed scanning tunneling microscopy with a constant current to study the surface of the graphene membranes. This type of microscopy uses a small electron beam to create a contour map of the surface. To keep the current constant, researchers change the voltage as the scanning tunneling microscope tip moves up and down, and the researchers found that this causes the freestanding graphene membrane to change shape.

“The membrane is trying to touch the tip,” Barraza-Lopez said. They discovered that the electric charge between the tip and the membrane influences the position and shape of the membrane. So by changing the tip voltage, the scientists controlled the strain on the membrane. This control becomes important for controlling the pseudo-magnetic properties of graphene.

In conjunction with the experiments, Barraza-Lopez, Yurong Yang of the University of Arkansas and Nanjing University, and Laurent Bellaiche of the University of Arkansas examined theoretical systems involving graphene membranes to better understand this new-found ability to control the strain created by the new technique. They verified the amount of strain on these theoretical systems and simulated the location of the scanning tunneling microscopy tip in relation to the membrane. While doing so, they discovered that the interaction of the membrane and tip depends upon the tip’s location on the freestanding graphene. This allows scientists to calculate the pseudo-magnetic field for a given voltage and strain.

“If you know the strain, you can use theory and compute how big the pseudo-magnetic field may be,” said Barraza-Lopez. They found that because of the boundaries created by the square copper crucible, the pseudo-magnetic field swings back and forth between positive and negative values, so scientists are reporting the maximum value for the field instead of a constant value.

“If you were able to make the crucibles triangular, you would be closer to having non-oscillating fields,” Barraza-Lopez said. “This would bring us closer to using this pseudo-magnetic property of graphene membranes in a controlled way.”

The researchers report their findings in Physical Review B Rapid Communications.
Full details of this work are available online (PRB 85, 121406(R) (2012)). Scientists involved in the research are from the University of Arkansas, Nanjing University, École Centrale Paris, Quingdao University and Missouri State University.
CONTACTS:
Salvador Barraza-Lopez, physics
J. William Fulbright College of Arts and Sciences
479-575-5933, sbarraza@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

Further reports about: Membranes carbon atom graphene magnetic field method strain

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>