Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Offers Control of Strain on Graphene Membranes

04.04.2012
First controllable use of scanning tunneling microscopy on freestanding graphene

Graphene could be the superhero of materials – it’s light, strong and conducts heat and electricity effectively, which makes it a great material for potential use in all kinds of electronics. And because it’s made from carbon atoms, graphene is cheap and plentiful. Its electric and mechanical properties also affect one another in unique ways. But before freestanding graphene can live up to its potential, scientists need to be able to control these properties.

A group of physicists from the University of Arkansas and other institutions have developed a technique that allows them to control the mechanical property, or strain, on freestanding graphene, sheets of carbon one-atom thick suspended over the tops of tiny squares of copper. By controlling the strain on freestanding graphene, they also can control other properties of this important material.

“If you subject graphene to strain, you change its electronic properties,” said physics professor Salvador Barraza-Lopez. Strain on freestanding graphene causes the material to behave as if it is in a magnetic field, even though no magnets are present, a property that scientists will want to exploit -- if they can control the mechanical strain.

To control the mechanical strain, University of Arkansas researchers developed a new experimental approach. Physicists Peng Xu, Paul Thibado and students in Thibado’s group examined freestanding graphene membranes stretched over thin square “crucibles,” or meshes, of copper. They performed scanning tunneling microscopy with a constant current to study the surface of the graphene membranes. This type of microscopy uses a small electron beam to create a contour map of the surface. To keep the current constant, researchers change the voltage as the scanning tunneling microscope tip moves up and down, and the researchers found that this causes the freestanding graphene membrane to change shape.

“The membrane is trying to touch the tip,” Barraza-Lopez said. They discovered that the electric charge between the tip and the membrane influences the position and shape of the membrane. So by changing the tip voltage, the scientists controlled the strain on the membrane. This control becomes important for controlling the pseudo-magnetic properties of graphene.

In conjunction with the experiments, Barraza-Lopez, Yurong Yang of the University of Arkansas and Nanjing University, and Laurent Bellaiche of the University of Arkansas examined theoretical systems involving graphene membranes to better understand this new-found ability to control the strain created by the new technique. They verified the amount of strain on these theoretical systems and simulated the location of the scanning tunneling microscopy tip in relation to the membrane. While doing so, they discovered that the interaction of the membrane and tip depends upon the tip’s location on the freestanding graphene. This allows scientists to calculate the pseudo-magnetic field for a given voltage and strain.

“If you know the strain, you can use theory and compute how big the pseudo-magnetic field may be,” said Barraza-Lopez. They found that because of the boundaries created by the square copper crucible, the pseudo-magnetic field swings back and forth between positive and negative values, so scientists are reporting the maximum value for the field instead of a constant value.

“If you were able to make the crucibles triangular, you would be closer to having non-oscillating fields,” Barraza-Lopez said. “This would bring us closer to using this pseudo-magnetic property of graphene membranes in a controlled way.”

The researchers report their findings in Physical Review B Rapid Communications.
Full details of this work are available online (PRB 85, 121406(R) (2012)). Scientists involved in the research are from the University of Arkansas, Nanjing University, École Centrale Paris, Quingdao University and Missouri State University.
CONTACTS:
Salvador Barraza-Lopez, physics
J. William Fulbright College of Arts and Sciences
479-575-5933, sbarraza@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

Further reports about: Membranes carbon atom graphene magnetic field method strain

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>