Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method knocks out stubborn electron problem

04.07.2012
A newly published article in Physical Review Letters eliminates one of the top unsolved theoretical problems in chemical physics as ranked by the National Research Council in 1995.

Scientists now can more accurately predict the dynamic behavior of electrons in atoms and molecules in chemical reactions that govern a wide range of phenomena, including the fuel efficiency of combustion engines and the depletion of the atmospheric ozone.


David Mazziotti, a professor in chemistry at the University of Chicago, has solved a longstanding problem in quantum theory: how to compute the energies and properties of any atom or molecule in terms of just two of its electrons.

Credit: Kasra Naftchi-Ardebili

The paper by David Mazziotti, professor in chemistry at the University of Chicago, solves what specialists call the "N-representability problem." Robert Erdahl, a mathematician at Queens University in Canada and a leading authority on the N-representability problem, described Mazziotti's paper as "a striking advance," "an elegant theory," and "a remarkable achievement."

Research on the theoretical foundations of the problem has advanced significantly along two important but separate lines of research for more than 60 years, Erdahl noted. "Work in both directions has proceeded independently even though it was widely understood that a unified approach was required to achieve a clear understanding. However, no one has been able to construct a theory where both paths enter in partnership. In his recent work Mazziotti has achieved precisely that."

Molecules have anywhere from tens to thousands of electrons, and the computational complexity of simulating their behavior grows exponentially with the number of strongly correlated electrons, those whose motions are statistically linked to the motions of other electrons. Mazziotti's goal was to find a way to calculate the properties of many-electron systems via a two-electron technique, where the two electrons represent the other electrons in the system.

"The two-electron models provide a platform for exploring a whole range of chemistry and physics," Mazziotti said.

"If you are calculating, let's say, the water molecule, which has 10 electrons, your two-electron model has only two of the 10 electrons," Mazziotti said. "But the probability for finding those two electrons must be consistent with the other eight electrons in the real system."

The need for these consistencies, "What we call 'representability conditions,' are the necessary conditions that you really need to do two-electron calculations of many-electron molecules," he said.

Like minds

Three scientists independently proposed the idea of a two-electron model in the 1950s. One was A. John Coleman, a mathematician at Queens University in Canada, who presented the idea at a 1951 conference at Chalk River, Canada.

Two papers appeared in the journal Physical Review in 1955 making the same point. University of Chicago physicist Joseph Mayer authored one of the papers, while University of Florida chemist Per Olov Löwdin authored the other.

The search for these conditions later became known as the N-representability problem, following the terminology that Coleman had suggested in a 1963 paper published in Reviews of Modern Physics.

"Then there was a series of international conferences that were organized to search for these conditions," Mazziotti said.

An early confidence that researchers would work out the necessary conditions within a year or two gave way to despair in the late 1960s. By then it appeared that the previously unsuspected difficulty of the representability problem presented a potentially impossible barrier.

By the time the problem had come to Mazziotti's attention as a Harvard graduate student in 1995, the field had reached its nadir. In the early 2000s he began reviving interest in the problem with his formulation of mathematical procedures for some of the known conditions, and applying them for the first time to atoms and molecules.

Over the last 10 years, Mazziotti's steadily improving, two-electron models advanced chemistry research in ways not possible with the traditional equations of quantum mechanics.

"The thing is that we used partial N-representability conditions because we didn't know all of them," Mazziotti said. "We would never use all of them anyway, but it's one thing not to use all of the constraints. It's another thing not to know what they are."

Gap plugged

Mazziotti's Physical Review Letters paper plugs that gap, making the two-electron model a powerfully complete theory for mapping many-electron systems. "We can achieve much greater accuracy in our calculations by adding some of these new conditions that we've discovered," he said. "It's exciting because it's something I've been looking for since I started thinking about this in 1995."

Coleman, who died in 2010, said years ago that what inspired him to work on the N-representability problem was not the goal of computational efficiency or additional speed. It was instead the potential for tremendous new insight into how many-electron systems really work. "Ultimately, that is the driving force in my research, too," Mazziotti said.

Citation: "Structure of Fermionic Density Matrices: Complete N-representability Conditions," Physical Review Letters.

Funding: National Science Foundation, Army Research Office, Microsoft Corporation, Dreyfus Foundation, and David and Lucile Packard Foundation.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>