Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for detecting explosives

17.03.2009
A group of researchers in Tennessee and Denmark has discovered a way to sensitively detect explosives based on the physical properties of their vapors. Their technology, which is currently being developed into prototype devices for field testing, is described in the latest issue of the journal Review of Scientific Instruments, which is published by the American Institute of Physics (AIP).

"Certain classes of explosives have unique thermal characteristics that help to identify explosive vapors in presence of other vapors," says Thomas Thundat, a researcher at Oak Ridge National Laboratory (ORNL) and the University of Tennessee who conducted the research with his colleagues at ORNL and the Technical University of Denmark.

In their paper, the scientists show that their technology is capable of trace detection of explosives. They also show that it is capable of distinguishing between explosive and non-explosive chemicals and of differentiating between individual explosives, such as TNT, PETN, and RDX.

Thundat and others have been working on explosive sensors for years. Typical sensors use ion mobility spectrometers, which ionize tiny amounts of chemicals and measure how fast they move through an electric field. While these instruments are fast, sensitive, and reliable, they are also expensive and bulky, leading many researchers in the last few years to try to find a cheaper, more portable device for detecting explosives.

Much of this research focuses on "micromechanical" devices -- tiny sensors that have microscopic probes on which airborne chemical vapors deposit. When the right chemicals find the surface of the sensors, they induce tiny mechanical motions, and those motions create electronic signals that can be measured.

These devices are relatively inexpensive to make and can sensitively detect explosives, but they often have the drawback that they cannot discriminate between similar chemicals -- the dangerous and the benign. They may detect a trace amount of TNT, for instance, but they may not be able to distinguish that from a trace amount of gasoline.

Seeking to make a better micromechanical sensor, Thundat and his colleagues realized they could detect explosives selectively and with extremely high sensitivity by building sensors that probed the thermal signatures of chemical vapors.

They started with standard micromechanical sensors -- devices with microscopic cantilevers beams supported at one end. They modified the cantilevers so that they could be electronically heated by passing a current through them. Next they allowed air to flow over the sensors. If explosive vapors were present in the air, they could be detected when molecules in the vapor clung to the cantilevers.

Then by heating the cantilevers in a fraction of a second, they could discriminate between explosives and non-explosives. All the explosives they tested responded with unique and reproducible thermal response patterns within a split second of heating. In their paper, Thundat and his colleagues demonstrate that they could detect very small amounts of adsorbed explosives -- with a limit of 600 picograms (a picogram is a trillionth of a gram). They are now improving the sensitivity and making a prototype device, which they expect to be ready for field testing later this year.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>