Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane on Mars is not an indication for life

31.05.2012
Intense UV radiation on the red planet releases methane from organic materials which meteorites transport onto its surface

It was a sensation when scientists discovered methane in Mars’ atmosphere nine years ago. Many saw the presence of the gas as a clear indication of life on the inhospitable planet, as on Earth methane is produced predominantly by biological processes.


Methane concentration on Mars: The graphics shows the calculated methane concentrations in parts per billion (ppb) on Mars during the summer in the northern hemisphere. Violet and blue indicate small methane, red areas indicate large amounts.
Source: NASA

Others assumed geological processes, such as volcanoes, to be the cause. What has been missing until now is proof of where the methane actually comes from, however. Researchers at the Max Planck Institute for Chemistry in Mainz and the universities in Utrecht and Edinburgh have now been able to show that methane escapes from a meteorite if it is irradiated with ultraviolet light under Martian conditions.

Since meteorites and interplanetary dust from space, which carry along carbonaceous compounds, continuously impact on the Martian surface, the researchers conclude that high-energy UV radiation triggers the release of methane from the meteorites.

Since scientists identified larger quantities of methane in the Martian atmosphere in 2003, there has been much speculation about its source. The best-known hypothesis states that microorganisms produce the methane, and is thus an indication of life on the red planet. Another hypothesis assumes the source to be geological methane sources in Mars’ interior. To date, none of the theories has been able to conclusively explain the large quantity of 200 to 300 tonnes of methane annually which are produced on Mars, according to projections.

Without an expedition to Mars and with nothing more than a meteorite to help them, researchers at the Max Planck Institute for Chemistry in Mainz and the universities in Utrecht and Edinburgh have now found a major source. “Methane is produced from innumerable, small micro-meteorites and interplanetary dust particles that land on the Martian surface from space,” explains Frank Keppler, lead author of the study now published in the research journal Nature. “The energy is provided by the extremely intense ultraviolet radiation,” adds the atmospheric chemist.

UV light decomposes carbon compounds in meteoritic matter

Unlike Earth, Mars has no protective ozone layer which could absorb most of the UV radiation from space. Moreover, the Martian atmosphere is very thin, so that a significantly smaller portion of the meteoritic material burns up in the atmosphere compared to Earth.

Together with colleagues from Great Britain and the Netherlands, the researchers from Mainz irradiated samples of the Murchison meteorite with ultraviolet light. “The meteorite contains several percent carbon and has a similar chemical composition to most of the meteoritic matter that lands on Mars,” says the cosmochemist Ulrich Ott. The 4.6 billion-year-old meteorite fell to Earth in 1969 in the Australian town of Murchison. The researchers selected conditions identical to those on Mars for the UV irradiation, which caused considerable quantities of methane to escape from the meteorite almost immediately. Their conclusion: carbonaceous compounds in the meteoritic matter are decomposed by the high-energy UV radiation, and methane molecules are formed in the process.

The methane production from meteorites depends on temperature

Since the temperature on the red planet varies from minus 143 degrees Celsius at the poles to plus 17 degrees Celsius at Mars’ equator, the scientists also investigated the meteoritic samples at appropriate temperatures. The warmer it became, the more methane was released by the meteoritic fragments. This temperature dependence also agrees with the different methane concentrations at different locations in the Martian atmosphere. In infrared spectra, the largest concentration of methane was found in the equatorial region, the warmest place on Mars, relatively speaking.

The results obtained by Frank Keppler’s team should bring “down to earth” all those who firmly believe in the biological origin of methane. The researchers cannot fully exclude the hypothesis of Martian microbes, however, because, although the process found here is inevitable, it is quite possible that further processes contribute to methane production. The researchers hope that Curiosity, the Mars Rover that NASA expects to land on our neighbouring planet at the beginning of August, will provide more details on the formation of methane, and maybe even final clarification as to whether there is life on Mars.

Original publication
Ultraviolet radiation induced methane emissions from meteorites and the Martian atmosphere
Frank Keppler, Ivan Vigano, Andy McLeod, Ulrich Ott, Marion Früchtl, Thomas Röckmann

Nature, 31. Mai 2012; DOI 10.1038/nature11203 (2012)

Contact
Dr. Frank Keppler
Max Planck Institut for Chemistry
Phone: +49-6131-305 4800
E-mail: frank.keppler@mpic.de
Dr. Ulrich Ott
Max Planck Institut for Chemistry
Phone: +49-160-5467230
E-mail: uli.ott@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Further information:
http://www.mpic.de

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>