Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Meteorite may represent 'bulk background' of Mars' battered crust


NWA 7034, a meteorite found a few years ago in the Moroccan desert, is like no other rock ever found on Earth. It's been shown to be a 4.4 billion-year-old chunk of the Martian crust, and according to a new analysis, rocks just like it may cover vast swaths of Mars.

In a new paper, scientists report that spectroscopic measurements of the meteorite are a spot-on match with orbital measurements of the Martian dark plains, areas where the planet's coating of red dust is thin and the rocks beneath are exposed. The findings suggest that the meteorite, nicknamed Black Beauty, is representative of the "bulk background" of rocks on the Martian surface, says Kevin Cannon, a Brown University graduate student and lead author of the new paper.

The research, co-authored by Jack Mustard from Brown and Carl Agee from the University of New Mexico, is in press in the journal Icarus.

When scientists started analyzing Black Beauty in 2011, they knew they had something special. Its chemical makeup confirmed that it was a castaway from Mars, but it was unlike any Martian meteorite ever found. Before Black Beauty, all the Martian rocks found on Earth were classified as SNC meteorites (shergottites, nakhlites, or chassignites). They're mainly igneous rocks made of cooled volcanic material. But Black Beauty is a breccia, a mashup of different rock types welded together in a basaltic matrix. It contains sedimentary components that match the chemical makeup of rocks analyzed by the Mars rovers. Scientists concluded that it is a piece of Martian crust -- the first such sample to make it to Earth.

Cannon and Mustard thought Black Beauty might help to clear up a longstanding enigma: the spectral signal from SNC meteorites never quite match with remotely sensed specra from the Martian surface. "Most samples from Mars are somewhat similar to spacecraft measurements," Mustard said, "but annoyingly different."

So after acquiring a chip of Black Beauty from Agee, Cannon and Mustard used a variety of spectroscopic techniques to analyze it. The work included use of a hyperspectral imaging system developed by Headwall photonics, a Massachusetts-based company. The device enabled detailed spectral imaging of the entire sample.

"Other techniques give us measurements of a dime-sized spot," Cannon said. "What we wanted to do was get an average for the entire sample. That overall measurement was what ended up matching the orbital data."

The researchers say the spectral match helps put a face on the dark plains, suggesting that the regions are dominated by brecciated rocks similar to Black Beauty. Because the dark plains are dust-poor regions, they're thought to be representative of what hides beneath the red dust on much of the rest of the planet.

"This is showing that if you went to Mars and picked up a chunk of crust, you'd expect it to be heavily beat up, battered, broken apart and put back together," Cannon said.

That the surface of Mars would be rich in Black Beauty-like breccias makes a lot of sense, given what we know about Mars, the researchers say.

"Mars is punctured by over 400,000 impact craters greater than 1 km in diameter ...," they write. "Because brecciation is a natural consequence of impacts, it is expected that material similar to NWA 7034 has accumulated on Mars over time."

In other words, Mustard says, the bulk of rocks on the surface of Mars probably look a lot like Black Beauty: "dark, messy and beautiful."


Note to Editors:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>