Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metamaterials shake up electrons

New man-made materials could produce unique chaotic motion in electron beams

A team at the RIKEN Advanced Science Institute in Wako has predicted that man-made structures called metamaterials could produce instabilities in electron beams (1). The effect could provide new methods for generating and amplifying optical signals.

Metamaterials are often known as left-handed media (LHM) because they break the right-hand rule of electromagnetism. This means that the ‘envelope’ of a wave—created by changes in wave height—in LHM can move in the opposite direction to the wave’s overall motion. This is expected to produce phenomena similar to backward wave oscillators, which are common sources of microwave radiation.

“Any system that contains two oppositely directed fluxes of information can be unstable if the coupling between the information carriers (waves and electrons in our case) is strong enough,” explains RIKEN scientist Yuriy Bliokh, also at Technion-Israel Institute of Technology in Haifa.

The coupling between carriers in LHM is provided by Cherenkov radiation—a type of radiation emitted when a charged particle passes through an insulator at a speed faster than the speed of light in the insulator. It is responsible for the blue glow in nuclear reactors, and propagates from a particle beam just like the wake from a moving ship.

In LHM, Cherenkov radiation moves backwards, providing strong feedback for particles moving behind. In particular, two electron beams side-by-side could excite each other via their Cherenkov radiation, producing unstable, chaotic motion in the beams.

To investigate these effects, Bliokh and RIKEN co-workers Sergey Savel’ev, also at Loughborough University, UK, and Franco Nori, also at the University of Michigan, USA, developed a model which solves the equations of motion for two electron beams passing through LHM, and calculates the total electric field generated. "Small perturbations in the beam density were introduced to represent fluctuations that can occur in the real world," says Savel'ev.

The small perturbations developed into large instabilities, causing the beam to excite itself. "The behavior resembles beam instabilities that have been discovered in both plasma physics and microwave electronics," says Nori, and could have several applications if a suitable LHM can be realized in the laboratory.

“From my point of view, the most interesting applications would be in the short-wavelength (infrared, visible light) range, because there are already so many devices in the microwave frequency band,” says Bliokh. “This effect could provide tunable sources of regular or stochastic radiation. Also, when the beam current is low, the instability is not developed and the system could be used as an amplifier.”

1. Bliokh, Y.P., Savel’ev, S. & Nori, F. Electron-beam instability in left-handed media. Physical Review Letters 100, 244803 (2008).

Saeko Okada | ResearchSEA
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>