Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury rising

18.04.2011
Mercury-containing oxides offer a new perspective on the mechanism of superconductivity

To diversify the applications of superconductors that currently operate at chilly temperatures below 135 kelvin (K), scientists are searching for new classes of superconducting materials that will show this property at warmer temperatures.

Now, a research team in Japan has synthesized a promising new class of superconductors[1], made of Hg0.44ReO3, where an unusual motion of the mercury (Hg) atoms enhances superconducting properties at temperatures up to 7.7 K.

The Dutch physicist Heike Kamerlingh Onnes discovered superconductivity one hundred years ago, when he noticed that the electrical resistance of mercury dropped to zero suddenly at 4.2 K. Superconducting materials are now used routinely in magnetic resonance imaging scanners.

In classical superconductors such as mercury, superconductivity arises through the combined vibrations of the atoms in the crystal. This makes the crystal structure a key factor for the superconducting properties of a material. In the case of HgxReO3, the atomic structure consists of rhenium (Re) and oxygen (O) building blocks. In the empty spaces between them, the mercury atoms arrange in chains (Fig. 1). However, some of the available places along these chains lack mercury atoms, and the team’s work suggests that this leads to an arrangement of paired mercury atoms.

"These pairs move within the channel in an oscillatory motion known as rattling", explains team-member Ayako Yamamoto from the RIKEN Advanced Science Institute in Wako. The rattling vibrations provide a strong feedback for the electrons, and therefore reinforce superconductivity in the material. In comparison to a similar structure lacking mercury pairs, the superconducting temperature of Hg0.44ReO3 at 7.7 K is almost twice as high. "Despite remaining below the present record of 135 K for a superconductor, there is potential for improving operation temperatures", says Yamamoto. “The application of pressure increases the superconducting temperature to 11.1 K, and this could mean that for the right crystal structure further enhancement is possible.”

Yamamoto and her colleagues are now working to optimize the crystal structure further—for example, by replacing rhenium with other elements. A better understanding of the influence of the mercury atoms’ rattling motion may also provide better insight into the mechanism of superconductivity in such structures. “Mercury seems to be a magic element in superconductivity, not only for its role in Kamerlingh Onnes’ discovery, but also for the fact that mercury is part of the material with the highest known superconducting temperature, HgBa2Ca2Cu3Ox,” Yamamoto explains. "Once more, mercury is playing a key role for new superconductors," she says.

The corresponding author for this highlight is based at the Magnetic Materials Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Ohgushi, K., Yamamoto, A., Kiuchi, Y., Ganguli, C., Matsubayashi, K., Uwatoko, Y. & Takagi, H. Superconducting phase at 7.7 K in the HgxReO3 compound with a hexagonal bronze structure. Physical Review Letters 106, 017001 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6569
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>