Mercury rising

To diversify the applications of superconductors that currently operate at chilly temperatures below 135 kelvin (K), scientists are searching for new classes of superconducting materials that will show this property at warmer temperatures.

Now, a research team in Japan has synthesized a promising new class of superconductors[1], made of Hg0.44ReO3, where an unusual motion of the mercury (Hg) atoms enhances superconducting properties at temperatures up to 7.7 K.

The Dutch physicist Heike Kamerlingh Onnes discovered superconductivity one hundred years ago, when he noticed that the electrical resistance of mercury dropped to zero suddenly at 4.2 K. Superconducting materials are now used routinely in magnetic resonance imaging scanners.

In classical superconductors such as mercury, superconductivity arises through the combined vibrations of the atoms in the crystal. This makes the crystal structure a key factor for the superconducting properties of a material. In the case of HgxReO3, the atomic structure consists of rhenium (Re) and oxygen (O) building blocks. In the empty spaces between them, the mercury atoms arrange in chains (Fig. 1). However, some of the available places along these chains lack mercury atoms, and the team’s work suggests that this leads to an arrangement of paired mercury atoms.

“These pairs move within the channel in an oscillatory motion known as rattling”, explains team-member Ayako Yamamoto from the RIKEN Advanced Science Institute in Wako. The rattling vibrations provide a strong feedback for the electrons, and therefore reinforce superconductivity in the material. In comparison to a similar structure lacking mercury pairs, the superconducting temperature of Hg0.44ReO3 at 7.7 K is almost twice as high. “Despite remaining below the present record of 135 K for a superconductor, there is potential for improving operation temperatures”, says Yamamoto. “The application of pressure increases the superconducting temperature to 11.1 K, and this could mean that for the right crystal structure further enhancement is possible.”

Yamamoto and her colleagues are now working to optimize the crystal structure further—for example, by replacing rhenium with other elements. A better understanding of the influence of the mercury atoms’ rattling motion may also provide better insight into the mechanism of superconductivity in such structures. “Mercury seems to be a magic element in superconductivity, not only for its role in Kamerlingh Onnes’ discovery, but also for the fact that mercury is part of the material with the highest known superconducting temperature, HgBa2Ca2Cu3Ox,” Yamamoto explains. “Once more, mercury is playing a key role for new superconductors,” she says.

The corresponding author for this highlight is based at the Magnetic Materials Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Ohgushi, K., Yamamoto, A., Kiuchi, Y., Ganguli, C., Matsubayashi, K., Uwatoko, Y. & Takagi, H. Superconducting phase at 7.7 K in the HgxReO3 compound with a hexagonal bronze structure. Physical Review Letters 106, 017001 (2011).

Media Contact

gro-pr Research asia research news

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors