Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury's "spider" Pantheon Fossae formation linked to asteroid impact

23.09.2008
As NASA’s MESSENGER spacecraft prepares for its second flyby of Mercury, new analyses of data from the first flyby will be presented at the European Planetary Science Congress in Münster on Tuesday 23rd September.

Dr Sean Solomon, MESSENGER’s Principal Investigator, will present a model that suggests that the origin of the Pantheon Fossae, a radiating web of troughs located in the giant Caloris Basin, is directly linked to an impact crater at the centre of the web.

The Caloris Basin is the youngest-known large impact basin on Mercury. The basin was discovered in 1974 during Mariner 10’s flyby, but the centre of the basin had not been seen until MESSENGER’s first flyby on 14th January.

MESSENGER revealed that the crater’s interior appeared to have been flooded by volcanic material in a similar way to the lunar mare basins. A ring of troughs was observed around the circumference of the basin. However, the biggest surprise was the discovery of radiating pattern of troughs, initially dubbed “the spider” by the team, which was unlike any structure seen in lunar basins or elsewhere on Mercury.

The troughs are hundreds of kilometres in length and the central crater, named Apollodorus after the architect of the Pantheon temple in Rome, is about 40 kilometres across. Several models have been proposed for their formation, including uplift of the basin due to heating from below, pressure building up from the superposition of surrounding plains or inward crustal flow. However, to date, none of these models could explain the radial pattern observed.

Dr Solomon and colleagues developed a three-dimensional model of deformations in Mercury’s crust in the Caloris basin and then modelled the effect of an asteroid impact at the centre.

“We found that stresses building up within the crust could explain the troughs found around the circumference of the basin but not the radial web at the centre. When we modelled the effect of a meteorite striking the centre of a pre-stressed basin floor, we found that the formation of the crater relieved the stress build-up and weakened the central area, allowing the troughs to spread out like cracks in a windscreen,” said Dr Solomon.

As the crater appears to be superimposed over the troughs, it appears that the Pantheon network formed simultaneously with the Apollodorus crater.

However, not all scientists agree that the crater’s presence at the centre of the web is anything more than coincidence.

Professor Jim Head, of Brown University, Rhode Island, and co-investigator of the MESSENGER mission believes that the Pantheon troughs could also have been caused by volcanic activity. An upflow of magma at the centre of the basin could have formed a reservoir at depth and a radial network of dykes.

“The first MESSENGER flyby provided a lot of evidence that volcanism has played an important role in Mercury’s history, in particular around the Caloris Basin. We found what appears to be a shield volcano located just outside the Caloris Basin and the area is surrounded by smooth plains, relatively free from impacts, which suggests a young surface. Given the amount of volcanic activity we’re discovering in that area, I wouldn’t want to rule out a volcanic cause just yet. Maybe MESSENGER’s second flyby will help us solve the mystery,” said Prof Head.

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>