Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical forces could affect gene expression

03.02.2010
University of Michigan researchers have shown that tension on DNA molecules can affect gene expression---the process at the heart of biological function that tells a cell what to do.

Scientists understand the chemistry involved in gene expression, but they know little about the physics. The U-M group is believed to be the first to actually demonstrate a mechanical effect at work in this process. Their paper is published in the current edition of Physical Review Letters.

"We have shown that small forces can control the machinery that turns genes on and off. There's more to gene regulation than biochemistry. We have to look at mechanics too," said Jens-Christian Meiners, associate professor in the Department of Physics and director of the biophysics program.

A better understanding of how cells regulate themselves could lead to new insights into how the process could fail and lead to disease.

"When cells start to misinterpret regulatory signals, cardiac disease, birth defects, and cancer can result. In fact, mechanical signals have been implicated as a culprit in a variety of pathologies," said Joshua Milstein, a research fellow in the Department of Physics.

To perform their experiment, the scientists used custom "optical tweezers," or lasers, to pull on the ends of bacterial DNA strands with 200 femtonewtons of force, said Yih-Fan Chen, a doctoral student in the Department of Biomedical Engineering. Chen designed and built the tweezers.

The force they used corresponds roughly to the weight of one-billionth of a grain of rice.

In segments of DNA that were tethered to a microscope slide, the scientists observed a 10-fold decrease in the rate at which the strands looped in on themselves.

DNA looping prevents genes within the loops from being expressed. A common mechanism for gene regulation, it also occurs in complex organisms including humans. Specialized proteins act as buckles to connect distant points on the DNA to form the loops. That's the chemistry part. The challenge for physics is to understand how the DNA bends so those distant points can come together.

While this experiment was performed on free DNA, the scientists say forces as much as 100 times stronger are regularly created inside cells as contents shift and buffet each other.

"If we can basically shut this process down with the tiniest force, how could all these larger forces not have an impact on gene expression?" Milstein said.

Meiners and his team are striving for a quantitative understanding of this biological process. He likens the current state of our understanding of gene expression to a diagram. He is searching for equations, and these results begin to provide that.

"We can tell you how long you'll have to wait for a DNA loop to form based on how much force you apply to the DNA," Meiners said. "We're one step closer to understanding cells quantitatively."

The paper is called "Femtonewton Entropic Forces Can Control the Formation of Protein-Mediated DNA Loops."

This research is funded by the National Institutes of Health and the National Science Foundation.

For more information:

Jens-Christian Meiners: http://biop.lsa.umich.edu/meiners-jens-christian.aspx

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://prl.aps.org/abstract/PRL/v104/i4/e048301

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>