Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mechanical forces could affect gene expression

University of Michigan researchers have shown that tension on DNA molecules can affect gene expression---the process at the heart of biological function that tells a cell what to do.

Scientists understand the chemistry involved in gene expression, but they know little about the physics. The U-M group is believed to be the first to actually demonstrate a mechanical effect at work in this process. Their paper is published in the current edition of Physical Review Letters.

"We have shown that small forces can control the machinery that turns genes on and off. There's more to gene regulation than biochemistry. We have to look at mechanics too," said Jens-Christian Meiners, associate professor in the Department of Physics and director of the biophysics program.

A better understanding of how cells regulate themselves could lead to new insights into how the process could fail and lead to disease.

"When cells start to misinterpret regulatory signals, cardiac disease, birth defects, and cancer can result. In fact, mechanical signals have been implicated as a culprit in a variety of pathologies," said Joshua Milstein, a research fellow in the Department of Physics.

To perform their experiment, the scientists used custom "optical tweezers," or lasers, to pull on the ends of bacterial DNA strands with 200 femtonewtons of force, said Yih-Fan Chen, a doctoral student in the Department of Biomedical Engineering. Chen designed and built the tweezers.

The force they used corresponds roughly to the weight of one-billionth of a grain of rice.

In segments of DNA that were tethered to a microscope slide, the scientists observed a 10-fold decrease in the rate at which the strands looped in on themselves.

DNA looping prevents genes within the loops from being expressed. A common mechanism for gene regulation, it also occurs in complex organisms including humans. Specialized proteins act as buckles to connect distant points on the DNA to form the loops. That's the chemistry part. The challenge for physics is to understand how the DNA bends so those distant points can come together.

While this experiment was performed on free DNA, the scientists say forces as much as 100 times stronger are regularly created inside cells as contents shift and buffet each other.

"If we can basically shut this process down with the tiniest force, how could all these larger forces not have an impact on gene expression?" Milstein said.

Meiners and his team are striving for a quantitative understanding of this biological process. He likens the current state of our understanding of gene expression to a diagram. He is searching for equations, and these results begin to provide that.

"We can tell you how long you'll have to wait for a DNA loop to form based on how much force you apply to the DNA," Meiners said. "We're one step closer to understanding cells quantitatively."

The paper is called "Femtonewton Entropic Forces Can Control the Formation of Protein-Mediated DNA Loops."

This research is funded by the National Institutes of Health and the National Science Foundation.

For more information:

Jens-Christian Meiners:

Nicole Casal Moore | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>