Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring unconventionality

05.07.2010
Interference patterns made by wave-like electrons reveal that tiny atomic magnets are critical to iron-based superconductors

Achieving superconductivity at room temperature has represented one of the holy grails of physics for decades. A practical material with zero electrical resistance would not only represent a major advance in physics, but also revolutionize technologies from power grids to electric motors. However, the mechanism behind so-called ‘high-temperature’ superconductors, which are superconducting above approximately -240 Celsius, has been unclear, and the highest temperature at which superconductivity has been observed remains at a frigid -108 Celsius.

Now, the mechanism responsible for superconductivity in an important class of high-temperature superconducting materials, discovered in 2008, has been revealed by Tetsuo Hanaguri and colleagues at the RIKEN Advanced Science Institute, the Japan Science and Technology Agency (JST), The University of Electro-Communications in Tokyo, and The University of Tokyo1.

Pairing up

The researchers studied the mechanism behind a key property of all superconductors: electron pairing. In an ordinary material, electrons travel independently and their motion is regularly disrupted, or scattered, by defects and by vibrations (or phonons) of the atomic lattice they are traveling through. This leads to electrical resistance, so that any flowing current must be ‘pushed’ along by an applied voltage. In superconductors, electrons travel in pairs, rather than individually, making them less prone to scattering. A minimum amount of energy called the ‘superconducting gap’ energy must then be expended to break an electron pair. Since this energy is unavailable at low temperatures, the motion of the electron pairs remains unperturbed, and the material’s resistance is zero. This means a current can flow perpetually without any applied voltage.

Hanaguri and colleagues focused on understanding how electron pairing occurs in iron-based superconductors, one of the two major classes of high-temperature superconductors. In conventional, low-temperature superconductors, electrons are paired because phonons create attractions between them, overcoming the natural repulsion the electrons have as a result of their identical negative charges. In iron-based superconductors, however, superconductivity is associated with a particular ordering of the atomic magnets found in the materials. This generated speculation among physicists that these tiny magnets, or spins, may be involved in the pairing mechanism. The work by Hanaguri and colleagues provides strong evidence that these spins are indeed responsible for electron pairing in iron-based superconductors.

Out of phase

The researchers leveraged their expertise with scanning tunneling microscopes (STMs) to gather this evidence. Traditionally used to map the shapes of nanostructures and atoms, these microscopes measure the current between a sharp nanoscale tip and a surface just beneath it. They can also be used to measure the momentum of electrons traveling across a surface. Just before the discovery of iron-based superconductors, Hanaguri had developed a method at RIKEN in Hidenori Takagi’s laboratory to use STMs to measure the phase of electrons, and this capability was the key to their work on superconductors.

Hanaguri and colleagues were able to measure the interference pattern of electron pairs by purposefully scattering them from magnetic vortices that they created in the superconductor Fe(Se,Te) using an applied magnetic field. Electron pairs behave like waves at very small scales so, like all waves, they have a phase. For example, two water waves traveling across a pond at the same speed have different phases if one wave is slightly behind the other. If they collide, they make an interference pattern that is affected by the phase difference between them. Similarly, the interference pattern made by electron pairs is affected by the phase difference between those pairs.

The researchers measured and interpreted these interference patterns to understand iron-based superconductors. After initial measurements on high-quality crystals grown by their collaborator Seiji Niitaka, they began the task of data interpretation. Unfortunately, they made an early mistake with the coordinate system that stymied their progress until Kazuhiko Kuroki from The University of Electro-Communications realized the error at a presentation. Kuroki later joined the collaboration and helped interpret the measured interference patterns.

The team found that the patterns could be explained by assuming that the phase of an electron pair, and its associated superconducting gap, depends on the momentum of the pair (Fig. 2). This telltale sign of spin-mediated electron pairing had been predicted theoretically but never realized experimentally. By confirming the role of spins in iron-based superconductors, the team’s data lay the foundation for an understanding of superconductivity that is not based on lattice vibrations unlike more conventional superconductors.

Past and future

Hanaguri says his group was in a lucky position at the outset. “My ‘aha!’ moment came when I realized that the phase-sensitive STM technique that I had already developed could be applied to iron superconductors, which had just been discovered.” He also counts openness as a key to the success of the work: had Hanaguri not comprehensively described his preliminary results at a conference, Kuroki would not have identified his mistake. “My policy is that all the data, techniques and plans that I have must be as open as possible,” Hanaguri says.

Hanaguri also notes that the phase-sensitive scanning tunneling microscope developed by his team yielded a significant result in only its first years of operation, and can be expected to produce important results in other realms of physics, including magnetism. Ultimately, Hanaguri would be most satisfied by finding something completely new. “Our equipment is capable of studying matter under extreme conditions, and it is under extreme conditions that many new physical phenomena have been discovered,” he explains. “To discover a new phenomenon would be much more exciting than the elucidation of an existing phenomenon’s mechanism.”

About the Researcher

Tetsuo Hanaguri

Tetsuo Hanaguri was born in Tokyo, Japan, in 1965. He graduated from the Department of Applied Physics at Tohoku University in 1988, and received his PhD in applied physics from the same university in 1993. He then worked as a research associate and associate professor at The University of Tokyo until he joined RIKEN. Since 2004, he has held the position of senior research scientist in the Takagi Magnetic Materials Laboratory at RIKEN. He works in the field of experimental condensed-matter physics at low temperatures, and his current research focus is on spectroscopic imaging scanning tunneling microscopy of complex electron systems including superconductors and topological insulators. He is also interested in measurement science and technology and enjoys building scientific apparatus.

Journal information
1. Hanaguri, T., Niitaka, S., Kuroki, K., Takagi, H. Unconventional s-wave
superconductivity in Fe(Se,Te). Science 328, 474–476 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/hom/6356
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>