Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measuring unconventionality

Interference patterns made by wave-like electrons reveal that tiny atomic magnets are critical to iron-based superconductors

Achieving superconductivity at room temperature has represented one of the holy grails of physics for decades. A practical material with zero electrical resistance would not only represent a major advance in physics, but also revolutionize technologies from power grids to electric motors. However, the mechanism behind so-called ‘high-temperature’ superconductors, which are superconducting above approximately -240 Celsius, has been unclear, and the highest temperature at which superconductivity has been observed remains at a frigid -108 Celsius.

Now, the mechanism responsible for superconductivity in an important class of high-temperature superconducting materials, discovered in 2008, has been revealed by Tetsuo Hanaguri and colleagues at the RIKEN Advanced Science Institute, the Japan Science and Technology Agency (JST), The University of Electro-Communications in Tokyo, and The University of Tokyo1.

Pairing up

The researchers studied the mechanism behind a key property of all superconductors: electron pairing. In an ordinary material, electrons travel independently and their motion is regularly disrupted, or scattered, by defects and by vibrations (or phonons) of the atomic lattice they are traveling through. This leads to electrical resistance, so that any flowing current must be ‘pushed’ along by an applied voltage. In superconductors, electrons travel in pairs, rather than individually, making them less prone to scattering. A minimum amount of energy called the ‘superconducting gap’ energy must then be expended to break an electron pair. Since this energy is unavailable at low temperatures, the motion of the electron pairs remains unperturbed, and the material’s resistance is zero. This means a current can flow perpetually without any applied voltage.

Hanaguri and colleagues focused on understanding how electron pairing occurs in iron-based superconductors, one of the two major classes of high-temperature superconductors. In conventional, low-temperature superconductors, electrons are paired because phonons create attractions between them, overcoming the natural repulsion the electrons have as a result of their identical negative charges. In iron-based superconductors, however, superconductivity is associated with a particular ordering of the atomic magnets found in the materials. This generated speculation among physicists that these tiny magnets, or spins, may be involved in the pairing mechanism. The work by Hanaguri and colleagues provides strong evidence that these spins are indeed responsible for electron pairing in iron-based superconductors.

Out of phase

The researchers leveraged their expertise with scanning tunneling microscopes (STMs) to gather this evidence. Traditionally used to map the shapes of nanostructures and atoms, these microscopes measure the current between a sharp nanoscale tip and a surface just beneath it. They can also be used to measure the momentum of electrons traveling across a surface. Just before the discovery of iron-based superconductors, Hanaguri had developed a method at RIKEN in Hidenori Takagi’s laboratory to use STMs to measure the phase of electrons, and this capability was the key to their work on superconductors.

Hanaguri and colleagues were able to measure the interference pattern of electron pairs by purposefully scattering them from magnetic vortices that they created in the superconductor Fe(Se,Te) using an applied magnetic field. Electron pairs behave like waves at very small scales so, like all waves, they have a phase. For example, two water waves traveling across a pond at the same speed have different phases if one wave is slightly behind the other. If they collide, they make an interference pattern that is affected by the phase difference between them. Similarly, the interference pattern made by electron pairs is affected by the phase difference between those pairs.

The researchers measured and interpreted these interference patterns to understand iron-based superconductors. After initial measurements on high-quality crystals grown by their collaborator Seiji Niitaka, they began the task of data interpretation. Unfortunately, they made an early mistake with the coordinate system that stymied their progress until Kazuhiko Kuroki from The University of Electro-Communications realized the error at a presentation. Kuroki later joined the collaboration and helped interpret the measured interference patterns.

The team found that the patterns could be explained by assuming that the phase of an electron pair, and its associated superconducting gap, depends on the momentum of the pair (Fig. 2). This telltale sign of spin-mediated electron pairing had been predicted theoretically but never realized experimentally. By confirming the role of spins in iron-based superconductors, the team’s data lay the foundation for an understanding of superconductivity that is not based on lattice vibrations unlike more conventional superconductors.

Past and future

Hanaguri says his group was in a lucky position at the outset. “My ‘aha!’ moment came when I realized that the phase-sensitive STM technique that I had already developed could be applied to iron superconductors, which had just been discovered.” He also counts openness as a key to the success of the work: had Hanaguri not comprehensively described his preliminary results at a conference, Kuroki would not have identified his mistake. “My policy is that all the data, techniques and plans that I have must be as open as possible,” Hanaguri says.

Hanaguri also notes that the phase-sensitive scanning tunneling microscope developed by his team yielded a significant result in only its first years of operation, and can be expected to produce important results in other realms of physics, including magnetism. Ultimately, Hanaguri would be most satisfied by finding something completely new. “Our equipment is capable of studying matter under extreme conditions, and it is under extreme conditions that many new physical phenomena have been discovered,” he explains. “To discover a new phenomenon would be much more exciting than the elucidation of an existing phenomenon’s mechanism.”

About the Researcher

Tetsuo Hanaguri

Tetsuo Hanaguri was born in Tokyo, Japan, in 1965. He graduated from the Department of Applied Physics at Tohoku University in 1988, and received his PhD in applied physics from the same university in 1993. He then worked as a research associate and associate professor at The University of Tokyo until he joined RIKEN. Since 2004, he has held the position of senior research scientist in the Takagi Magnetic Materials Laboratory at RIKEN. He works in the field of experimental condensed-matter physics at low temperatures, and his current research focus is on spectroscopic imaging scanning tunneling microscopy of complex electron systems including superconductors and topological insulators. He is also interested in measurement science and technology and enjoys building scientific apparatus.

Journal information
1. Hanaguri, T., Niitaka, S., Kuroki, K., Takagi, H. Unconventional s-wave
superconductivity in Fe(Se,Te). Science 328, 474–476 (2010)

gro-pr | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>