Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the mass of ‘massless’ electrons

24.06.2014

Individual electrons in graphene are massless, but when they move together, it’s a different story.

Graphene, a one-atom-thick carbon sheet, has taken the world of physics by storm—in part, because its electrons behave as massless particles. Yet these electrons seem to have dual personalities. Phenomena observed in the field of graphene plasmonics suggest that when the electrons move collectively, they must exhibit mass.


Prof. Donhee Ham and his student Hosang Yoon in the laboratory at the Harvard School of Engineering and Applied Sciences. (Photo by Eliza Grinnell, SEAS Communications.)


A schematic of the experimental setup. Ham and Yoon measured the change in phase of a microwave signal sent through the graphene. (Image courtesy of Hosang Yoon, Harvard SEAS.)

After two years of effort, researchers led by Donhee Ham, Gordon McKay Professor of Electrical Engineering and Applied Physics at the Harvard School of Engineering and Applied Sciences (SEAS), and his student Hosang Yoon, Ph.D.’14, have successfully measured the collective mass of ‘massless’ electrons in motion in graphene.

By shedding light on the fundamental kinetic properties of electrons in graphene, this research may also provide a basis for the creation of miniaturized circuits with tiny, graphene-based components.

The results of Ham and Yoon’s complex measurements, performed in collaboration with other experts at Columbia University and the National Institute for Materials Science in Japan, have been published online in Nature Nanotechnology.

“Graphene is a unique material because, effectively, individual graphene electrons act as though they have no mass. What that means is that the individual electrons always move at a constant velocity,” explains Ham. “But suppose we apply a force, like an electric field. The velocity of the individual electrons still remains constant, but collectively, they accelerate and their total energy increases—just like entities with mass. It’s quite interesting.”

Without this mass, the field of graphene plasmonics cannot work, so Ham’s team knew it had to be there—but until now, no one had accurately measured it.

“One of the greatest contributions of this work is that it is actually an extremely difficult measurement,” says Ham.

As Newton’s second law dictates, a force applied to a mass must generate acceleration. Yoon and Ham knew that if they could apply an electric field to a graphene sample and measure the electrons’ resulting collective acceleration, they could then use that data to calculate the collective mass.

But the graphene samples used in past experiments were replete with imperfections and impurities—places where a carbon atom was missing or had been replaced by something different. In those past experiments, electrons would accelerate but very quickly scatter as they collided with the impurities and imperfections.

“The scattering time was so short in those studies that you could never see the acceleration directly,” says Ham.

To overcome the scattering problem, several smart changes were necessary.

First, Ham and Yoon joined forces with Philip Kim, a physics professor at Columbia who will join the Harvard faculty on July 1 as Professor of Physics and of Applied Physics. A Harvard graduate (Ph.D. ’99), Kim is well known for his pioneering fundamental studies of graphene and his expertise in fabricating high-quality graphene samples.

The team was now able to reduce the number of impurities and imperfections by sandwiching the graphene between layers of hexagonal boron nitride, an insulating material with a similar atomic structure. By also collaborating with James Hone, a professor of mechanical engineering at Columbia, they designed a better way to connect electrical signal lines to the sandwiched graphene. And Yoon and Ham applied an electric field at a microwave frequency, which allows for the direct measurement of the electrons’ collective acceleration in the form of a phase delay in the current.

“By doing all this, we translated the situation from completely impossible to being at the verge of either seeing the acceleration or not,” says Ham. “However, the difficulty was still very daunting, and Hosang [Yoon] made it all possible by performing very fine and subtle microwave engineering and measurements—a formidable piece of experimentation.”

“To me, it was a victorious moment that finally justified a long-term effort, going through multiple trials and errors,” says Yoon, lead author of the paper in Nature Nanotechnology. “Until then, I wasn’t even sure if the experiment would really be possible, so it was like a ‘through darkness comes light’ moment.”

Collective mass is a key aspect of explaining plasmonic behaviors in graphene. By demonstrating that graphene electrons exhibit a collective mass and by measuring its value accurately, Yoon says, “We think it will help people to understand and design more sophisticated plasmonic devices with graphene.”

The team’s experiments also revealed that, in graphene, kinetic inductance (the electrical manifestation of collective mass) is several orders of magnitude larger than another, far more commonly exploited property called magnetic inductance. This is important in the push toward smaller and smaller electronic circuitry––the main theme of modern integrated circuits––because it means the same level of inductance can be achieved in a far smaller area. Furthermore, Ham and Yoon say that this miniature graphene-based kinetic inductor could enable the creation of a solid-state voltage-controlled inductor, complementary to the widely used voltage-controlled capacitor. It could be used to substantially increase the frequency tuning range of electronic circuits, which is an important function in communication applications.

For now, the challenge remains to improve the quality of graphene samples so that the detrimental effects of electron scattering can be further reduced.

Hosang Yoon is lead author of the paper in Nature Nanotechnology, with corresponding authors Donhee Ham at Harvard SEAS and Philip Kim at Columbia. Additional coauthors include Columbia professor James Hone, Columbia graduate students Carlos Forsythe and Lei Wang; Nikolaos Tombros, a former member of the Kim lab at Columbia, now at the University of Groningen in the Netherlands; Kenji Watanabe, chief researchers in optoelectronic materials at the National Institute for Materials Science (NIMS) in Japan; and Takashi Taniguchi, group leader in the Ultra-high Pressure Processes Group at NIMS.

This research was supported by the Air Force Office of Scientific Research (FA9550-13-1-0211), the Office of Naval Research (N000141310806, N000141310662), the National Science Foundation (DMR-1231319, DMR-1124894, DGE-1069420), and the Samsung Advanced Institute of Technology and its Global Research Opportunity program (A18960). Additional support was provided by the Nano Material Technology Development Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2012M3A7B4049966); the Columbia Optics and Quantum Electronics IGERT; and the Netherlands Organisation for Scientific Research. 

http://www.seas.harvard.edu/news/2014/06/measuring-mass-of-massless-electrons

Caroline Perry | AlphaGalileo

Further reports about: Engineering Harvard Nanotechnology acceleration experiments graphene

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>