Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the heat capacity of condensed light

19.04.2016

Liquid water is a very good heat storage medium – anyone with a Thermos bottle knows that. However, as soon as water boils or freezes, its storage capacity drops precipitously. Physicists at the University of Bonn have now observed very similar behavior in a gas of light particles. Their findings can be used, for example, to produce ultra-precise thermometers. The work appears in the prestigious technical journal "Nature Communications".

Water vapor becomes liquid under 100 degrees Celsius – it condenses. Physicists speak of a phase transition. In this process, certain thermodynamic characteristics of the water change abruptly. For instance, at a single stroke, twice as much heat energy can be stored than in the gaseous state.


Prof. Martin Weitz's team at the Institute of Applied Physics of the University of Bonn has measured the temperature of a gas of light, when it condenses.

© Symbolic Image: Tobias Damm

Light consists of tiny indivisible portions, the photons. Under certain conditions, they, too, can condense, if they are cooled enough. Many thousands of these light packets then suddenly fuse into a kind of super-photon with unusual characteristics – a so-called Bose-Einstein condensate.

Photon gas also changes heat storage characteristics abruptly

The physicists at the University of Bonn have now been able to show that the photon gas at this phase transition behaves according to the theoretical predictions of Bose and Einstein: Similar to water, it abruptly changes its heat storage capacity, meaning the ability to store thermal energy.

"This behavior was already known from condensed atoms", explains Prof. Dr. Martin Weitz of the Institute of Applied Physics. "However, this is the first time that this phenomenon has been demonstrated for a condensate of light".

Atoms, too, form a Bose-Einstein condensate, when they are cooled greatly and enough of them are simultaneously concentrated in a small space. They then suddenly become indistinguishable: They act like a single giant atom. Twenty years ago, physicists already demonstrated that the heat capacity of atoms suddenly changes at this phase transition. How strong this change is, however, can be measured only imprecisely for atoms. "In our condensate, this can be done substantially better", emphasizes Dr. Jan Klärs, who has since moved from Bonn to ETH Zurich.

The heat capacity of a material is calculated from the energy needed to heat it by one degree. Usually this is done by measuring the temperature of the substance before and after adding a defined amount of energy. However, the temperature of a gas of light can not be measured with a thermometer; but that is also not necessary. "In order to determine the temperature of the gas, it is only necessary to know the different wavelengths of the light particles – the distribution of its colors", says Klärs. And this can be determined with extreme precision with the methods available today.

"Our findings for the change in the heat capacity at the transition from photon gas to Bose-Einstein condensate match the theoretical predictions exactly", explains Tobias Damm of the Institute of Applied Physics. "The precision of this method is so high that it is very suitable for precision measurement of certain natural thermodynamic constants".

The heat content of the photon gas changes not only upon condensation to a super-photon, but also continuously with the ambient temperature. The Bonn physicists therefore hope that their findings can also be used to build high-precision thermometers.

Publication: Tobias Damm, Julian Schmitt, Qi Liang, David Dung, Frank Vewinger, Martin Weitz, & Jan Klärs: Calorimetry of a Bose-Einstein-condensed photon gas; Nature Communications, DOI: 10.1038/NCOMMS11340

Contact:

Prof. Dr. Martin Weitz
Institute of Applied Physics at the University of Bonn
Tel. ++49-228-73-4837 or -4836
Email: Martin.Weitz@uni-bonn.de

Tobias Damm
Institute of Applied Physics at the University of Bonn
Tel. ++49-228-73-3453
Email: damm@iap.uni-bonn.de

Dr. Julian Schmitt
Institute of Applied Physics at the University of Bonn
Tel. ++49-228-73-3453
Email: schmitt@iap.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>