Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the heat capacity of condensed light

19.04.2016

Liquid water is a very good heat storage medium – anyone with a Thermos bottle knows that. However, as soon as water boils or freezes, its storage capacity drops precipitously. Physicists at the University of Bonn have now observed very similar behavior in a gas of light particles. Their findings can be used, for example, to produce ultra-precise thermometers. The work appears in the prestigious technical journal "Nature Communications".

Water vapor becomes liquid under 100 degrees Celsius – it condenses. Physicists speak of a phase transition. In this process, certain thermodynamic characteristics of the water change abruptly. For instance, at a single stroke, twice as much heat energy can be stored than in the gaseous state.


Prof. Martin Weitz's team at the Institute of Applied Physics of the University of Bonn has measured the temperature of a gas of light, when it condenses.

© Symbolic Image: Tobias Damm

Light consists of tiny indivisible portions, the photons. Under certain conditions, they, too, can condense, if they are cooled enough. Many thousands of these light packets then suddenly fuse into a kind of super-photon with unusual characteristics – a so-called Bose-Einstein condensate.

Photon gas also changes heat storage characteristics abruptly

The physicists at the University of Bonn have now been able to show that the photon gas at this phase transition behaves according to the theoretical predictions of Bose and Einstein: Similar to water, it abruptly changes its heat storage capacity, meaning the ability to store thermal energy.

"This behavior was already known from condensed atoms", explains Prof. Dr. Martin Weitz of the Institute of Applied Physics. "However, this is the first time that this phenomenon has been demonstrated for a condensate of light".

Atoms, too, form a Bose-Einstein condensate, when they are cooled greatly and enough of them are simultaneously concentrated in a small space. They then suddenly become indistinguishable: They act like a single giant atom. Twenty years ago, physicists already demonstrated that the heat capacity of atoms suddenly changes at this phase transition. How strong this change is, however, can be measured only imprecisely for atoms. "In our condensate, this can be done substantially better", emphasizes Dr. Jan Klärs, who has since moved from Bonn to ETH Zurich.

The heat capacity of a material is calculated from the energy needed to heat it by one degree. Usually this is done by measuring the temperature of the substance before and after adding a defined amount of energy. However, the temperature of a gas of light can not be measured with a thermometer; but that is also not necessary. "In order to determine the temperature of the gas, it is only necessary to know the different wavelengths of the light particles – the distribution of its colors", says Klärs. And this can be determined with extreme precision with the methods available today.

"Our findings for the change in the heat capacity at the transition from photon gas to Bose-Einstein condensate match the theoretical predictions exactly", explains Tobias Damm of the Institute of Applied Physics. "The precision of this method is so high that it is very suitable for precision measurement of certain natural thermodynamic constants".

The heat content of the photon gas changes not only upon condensation to a super-photon, but also continuously with the ambient temperature. The Bonn physicists therefore hope that their findings can also be used to build high-precision thermometers.

Publication: Tobias Damm, Julian Schmitt, Qi Liang, David Dung, Frank Vewinger, Martin Weitz, & Jan Klärs: Calorimetry of a Bose-Einstein-condensed photon gas; Nature Communications, DOI: 10.1038/NCOMMS11340

Contact:

Prof. Dr. Martin Weitz
Institute of Applied Physics at the University of Bonn
Tel. ++49-228-73-4837 or -4836
Email: Martin.Weitz@uni-bonn.de

Tobias Damm
Institute of Applied Physics at the University of Bonn
Tel. ++49-228-73-3453
Email: damm@iap.uni-bonn.de

Dr. Julian Schmitt
Institute of Applied Physics at the University of Bonn
Tel. ++49-228-73-3453
Email: schmitt@iap.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Physics and Astronomy:

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

nachricht Next-generation optics offer the widest real-time views of vast regions of the sun
11.01.2017 | New Jersey Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>