Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the Temperature of Nanoparticles

01.12.2010
One of the holy grails of nanotechnology in medicine is to control individual structures and processes inside a cell. Nanoparticles are well suited for this purpose because of their small size; they can also be engineered for specific intracellular tasks.

When nanoparticles are excited by radio-frequency (RF) electromagnetic fields, interesting effects may occur. For example, the cell nucleus could get damaged inducing cell death; DNA might melt; or protein aggregates might get dispersed.

Some of these effects may be due to the localized heating produced by each tiny nanoparticle. Yet, such local heating, which could mean a difference of a few degrees Celsius across a few molecules, cannot be explained easily by heat-transfer theories. However, the existence of local heating cannot be dismissed either, because it's difficult to measure the temperature near these tiny heat sources.

Scientists at Rensselaer Polytechnic Institute have developed a new technique for probing the temperature rise in the vicinity of RF-actuated nanoparticles using fluorescent quantum dots as temperature sensors. The results are published in the Journal of Applied Physics.

Amit Gupta and colleagues found that when the nanoparticles were excited by an RF field the measured temperature rise was the same regardless of whether the sensors were simply mixed with the nanoparticles or covalently bonded to them. "This proximity measurement is important because it shows us the limitations of RF heating, at least for the frequencies investigated in this study," says project leader Diana Borca-Tasciuc. "The ability to measure the local temperature advances our understanding of these nanoparticle-mediated processes."

The article, "Local Temperature Measurement in the Vicinity of Electromagnetically Heated Magnetite and Gold Nanoparticles" by Amit Gupta, Ravi Kane and Diana-Andra Borca-Tasciuc appears in the Journal of Applied Physics. See: http://link.aip.org/link/japiau/v108/i6/p064901/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT JOURNAL OF APPLIED PHYSICS
Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>