Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring Mars: The MAVEN Magnetometer

27.03.2013
When the Mars Atmosphere and Volatile Evolution (MAVEN) mission begins its journey to the Red Planet in 2013, it will carry a sensitive magnetic-field instrument built and tested by a team at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Scheduled for launch in late 2013, MAVEN will be the first mission devoted to understanding the Martian upper atmosphere.

The goal of MAVEN is to determine the history of the loss of atmospheric gases to space through time, providing answers about Mars’ climate evolution.

By measuring the current rate of escape to space and gathering enough information about the relevant processes, scientists will be able to infer how the planet’s atmosphere evolved.

The trip to Mars takes 10 months, and MAVEN will go into orbit around the planet in September 2014.

The Goddard-built MAVEN magnetometer will be a sensitive tool investigating what remains of the Red Planet’s magnetic "shield." It will play a key role in studying the planet’s atmosphere and interactions with solar wind, helping answer the question of why a planet once thought to have an abundance of liquid water became a frozen desert.

“The MAVEN magnetometer is key to unraveling the nature of the interactions between the solar wind and the planet,” said MAVEN principal investigator Bruce Jakosky from University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (CU/LASP).

The magnetometer will measure the planet’s magnetic field through a series of coils, each containing a magnetic ring wrapped around a metal core. The sensors, known as "flux gates," are driven in and out of saturation by applied magnetic fields.

If there is no ambient magnetic field, the sensors remain balanced. If there is an ambient field present, the sensors will go into saturation more quickly in one direction than the other. It’s the imbalance that reveals the presence of an ambient field.

“A magnetometer is like an electronic compass,” said Jack Connerney, mission co-investigator at Goddard. “But we measure the strength, as well as the direction, of the magnetic field.”

The importance of studying the planet’s magnetic field is rooted in the theory that Mars lost its global magnetic field billions of years ago, allowing the solar wind to strip the atmosphere and dry out the planet.

Unlike Earth’s global magnetic field, which surrounds the entire planet, Mars only has patches of magnetic field left in its crust. This can create pockets of atmosphere that are protected against solar wind and others that are left vulnerable.

By measuring sections of the planet’s magnetic field, the magnetometer could help scientists create a bigger picture of the planet’s overall atmosphere.

“The magnetometer helps us see where the atmosphere is protected by mini-magnetospheres and where it’s open to solar wind,” Connerney said. “We can study the solar wind impact and how efficient it is at stripping the atmosphere.”

The magnetometer is one of six instruments that make up the Particles and Fields Package, being assembled by team members at the University of California, Berkeley. The magnetometer works with the other instruments from this package to gather data throughout the course of the projected yearlong orbit around the planet.

The spacecraft will go into orbit and pass closely over the planet’s surface and then move further away to study solar wind beyond the planet’s influence.

The magnetometer is a very sensitive instrument, so engineers have to work to ensure the instrument doesn’t accidentally measure the spacecraft’s magnetic field instead of the one the planet produces.

“We have to go to great extremes to be sure that we have minimized any magnetic fields from the spacecraft,” Jakosky said. “We are working hard to build a very ‘magnetically clean’ spacecraft that will meet our needs with regard to the magnetometer.”

The MAVEN principal investigator comes from CU/LASP. The university provides science operations, is building science instruments, and leads education/public outreach. NASA Goddard manages the project and is building two of the science instruments for the mission. Lockheed Martin of Littleton, Colo., is building the spacecraft and is responsible for mission operations. The University of California at Berkeley Space Sciences Laboratory is building science instruments for the mission. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., provides navigation support, the Deep Space Network, and the Electra telecommunications relay hardware and operations. Claire De Saravia

NASA's Goddard Space Flight Center, Greenbelt, Md.

Nancy Neal-Jones | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/maven/news/magnetometer.html

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>