Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the magnetism of antimatter

25.03.2013
Researchers measure antiprotons more accurately than ever before

In a breakthrough that could one day yield important clues about the nature of matter itself, a team of Harvard scientists have succeeding in measuring the magnetic charge of single particles of matter and antimatter more accurately than ever before.

As described in a March 25 paper in Physical Review Letters, the ATRAP team, led by Gerald Gabrielse, the George Vasmer Leverett Professor of Physics, and including post-doctoral fellows Stephan Ettenauer and Eric Tardiff and graduate students Jack DiSciacca, Mason Marshall, Kathryn Marable and Rita Kalra was able to capture individual protons and antiprotons in a "trap" created by electric and magnetic fields. By precisely measuring the oscillations of each particle, the team was able to measure the magnetism of a proton more than 1,000 times more accurately than an antiproton had been measured before. Similar tests with antiprotons produced a 680-fold increase in accuracy in the size of the magnet in an antiproton.

"That is a spectacular jump in precision for any fundamental quality," Gabrielse said, of the antiproton measurements. "That's a leap that we don't often see in physics, at least not in a single step."

... more about:
»Antiproton »Big Bang »CERN »CPT »Ultimately »magnetic field

Such measurements, Gabrielse said, could one day help scientists answer a question that seems more suited for the philosophy classroom than the physics lab – why are we here?

"One of the great mysteries in physics is why our universe is made of matter," he said. "According to our theories, the same amount of matter and antimatter was produced during the Big Bang. When matter and antimatter meet, they are annihilated. As the universe cools down, the big mystery is: Why didn't all the matter find the antimatter and annihilate all of both? There's a lot of matter and no antimatter left, and we don't know why."

Making precise measurements of protons and antiprotons, Gabrielse explained, could begin to answer those questions by potentially shedding new light on whether the CPT (Charge conjugation, Parity transformation, Time reversal) theorem is correct. An outgrowth of the standard model of particle physics, CPT states that the protons and antiprotons should be virtually identical – with the same magnitude of charge and mass – yet should have opposite charges.

Though earlier experiments, which measured the charge-to-mass ratio of protons and antiprotons, verified the predictions of CPT, Gabrielse said further investigation is needed because the standard model does not account for all forces, such as gravity, in the universe.

"What we wanted to do with these experiments was to say, 'Let's take a simple system – a single proton and a single antiproton – and let's compare their predicted relationships, and see if our predictions are correct," Gabrielse said. "Ultimately, whatever we learn might give us some insight into how to explain this mystery."

While researchers were able to capture and measure protons with relative ease, antiprotons are only produced by high-energy collisions that take place at the extensive tunnels of the CERN laboratory in Geneva, Gabrielse said, leaving researchers facing a difficult choice.

"Last year, we published a report showing that we could measure a proton much more accurately than ever before," Gabrielese said. "Once we had done that, however, we had to make a decision – did we want to take the risk of moving our people and our entire apparatus – crates and crates of electronics and a very delicate trap apparatus – to CERN and try to do the same thing with antiprotons? Antiprotons would only be available till mid-December and then not again for a year and a half.

"We decided to give it a shot, and by George, we pulled it off," he continued. "Ultimately, we argued that we should attempt it, because even if we failed, that failure would teach us something." In what Gabrielse described as a "gutsy" choice, graduate student Jack DiSciacca agreed to use this attempt to conclude his thesis research, and new graduate students Marshall and Marable signed on to help.

Though their results still fit within the predictions made by the standard model, Gabrielse said being able to more accurately measure the characteristics of both matter and antimatter may yet help shed new light on how the universe works.

"What's also very exciting about this breakthrough is that it now prepares us to continue down this road," he said. "I'm confident that, given this start, we're going to be able to increase the accuracy of these measurements by another factor of 1,000, or even 10,000."

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Antiproton Big Bang CERN CPT Ultimately magnetic field

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>