Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measuring the magnetism of antimatter

Researchers measure antiprotons more accurately than ever before

In a breakthrough that could one day yield important clues about the nature of matter itself, a team of Harvard scientists have succeeding in measuring the magnetic charge of single particles of matter and antimatter more accurately than ever before.

As described in a March 25 paper in Physical Review Letters, the ATRAP team, led by Gerald Gabrielse, the George Vasmer Leverett Professor of Physics, and including post-doctoral fellows Stephan Ettenauer and Eric Tardiff and graduate students Jack DiSciacca, Mason Marshall, Kathryn Marable and Rita Kalra was able to capture individual protons and antiprotons in a "trap" created by electric and magnetic fields. By precisely measuring the oscillations of each particle, the team was able to measure the magnetism of a proton more than 1,000 times more accurately than an antiproton had been measured before. Similar tests with antiprotons produced a 680-fold increase in accuracy in the size of the magnet in an antiproton.

"That is a spectacular jump in precision for any fundamental quality," Gabrielse said, of the antiproton measurements. "That's a leap that we don't often see in physics, at least not in a single step."

... more about:
»Antiproton »Big Bang »CERN »CPT »Ultimately »magnetic field

Such measurements, Gabrielse said, could one day help scientists answer a question that seems more suited for the philosophy classroom than the physics lab – why are we here?

"One of the great mysteries in physics is why our universe is made of matter," he said. "According to our theories, the same amount of matter and antimatter was produced during the Big Bang. When matter and antimatter meet, they are annihilated. As the universe cools down, the big mystery is: Why didn't all the matter find the antimatter and annihilate all of both? There's a lot of matter and no antimatter left, and we don't know why."

Making precise measurements of protons and antiprotons, Gabrielse explained, could begin to answer those questions by potentially shedding new light on whether the CPT (Charge conjugation, Parity transformation, Time reversal) theorem is correct. An outgrowth of the standard model of particle physics, CPT states that the protons and antiprotons should be virtually identical – with the same magnitude of charge and mass – yet should have opposite charges.

Though earlier experiments, which measured the charge-to-mass ratio of protons and antiprotons, verified the predictions of CPT, Gabrielse said further investigation is needed because the standard model does not account for all forces, such as gravity, in the universe.

"What we wanted to do with these experiments was to say, 'Let's take a simple system – a single proton and a single antiproton – and let's compare their predicted relationships, and see if our predictions are correct," Gabrielse said. "Ultimately, whatever we learn might give us some insight into how to explain this mystery."

While researchers were able to capture and measure protons with relative ease, antiprotons are only produced by high-energy collisions that take place at the extensive tunnels of the CERN laboratory in Geneva, Gabrielse said, leaving researchers facing a difficult choice.

"Last year, we published a report showing that we could measure a proton much more accurately than ever before," Gabrielese said. "Once we had done that, however, we had to make a decision – did we want to take the risk of moving our people and our entire apparatus – crates and crates of electronics and a very delicate trap apparatus – to CERN and try to do the same thing with antiprotons? Antiprotons would only be available till mid-December and then not again for a year and a half.

"We decided to give it a shot, and by George, we pulled it off," he continued. "Ultimately, we argued that we should attempt it, because even if we failed, that failure would teach us something." In what Gabrielse described as a "gutsy" choice, graduate student Jack DiSciacca agreed to use this attempt to conclude his thesis research, and new graduate students Marshall and Marable signed on to help.

Though their results still fit within the predictions made by the standard model, Gabrielse said being able to more accurately measure the characteristics of both matter and antimatter may yet help shed new light on how the universe works.

"What's also very exciting about this breakthrough is that it now prepares us to continue down this road," he said. "I'm confident that, given this start, we're going to be able to increase the accuracy of these measurements by another factor of 1,000, or even 10,000."

Peter Reuell | EurekAlert!
Further information:

Further reports about: Antiproton Big Bang CERN CPT Ultimately magnetic field

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>