Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurement scientists set a new standard in 3-D ears

13.10.2010
'HATS' off to the National Physical Laboratory for innovation in sound measurement

Scientists at the UK's National Physical Laboratory (NPL) have developed a means of representing a 3D model ear, to help redefine the standard for a pinna simulator (the pinna is the outer part of the ear) – used to measure sound in the way we perceive it.

The nature of human hearing is heavily dependent on the shape of the head and torso, and their interaction with sound reaching the ears allows for the perception of location within a 3D sound field.

Head and Torso Simulators (HATS) are designed to model this behaviour, enabling measurements and recordings to be made taking account of the Head Related Transfer Function (HRTF) - the difference between a sound in free air and the sound as it arrives at the eardrum.

HATS are mannequins with built-in calibrated ear simulators (and sometimes mouth simulators), that provide realistic reproduction of the acoustic properties of an average adult human head and torso. They are ideal for performing in-situ electro-acoustic tests on, telephone handsets (including mobile and cordless), headsets, audio conference devices, microphones, headphones, hearing aids and hearing protectors.

Critically the shape of the pinna has a large effect on the behaviour, and as a result it is defined for HATS by its own standard (IEC TR 60959:1990) to provide consistency across measurements. However, this standard defines the shape of the pinna through a series of 2D cross-sectional profiles. This form of specification and definition has on occasion proven to be an inadequate guide for manufacturing processes.

As part of a revision of this standard, the Acoustics Team at NPL teamed up with the National Freeform Centre in a novel move to redefine the standard through an on-line 3D CAD specification. A model ear was measured using a coordinate-measuring machine with laser scanner to produce a 3D scan of the ear, which can then be used to provide manufacturers with a more practical specification for reproduction and a standard that is easily comparable with similar non-contact freeform measurement techniques.

Ian Butterworth from NPL, said:

"Having a 2D pinna in an artificial ear has some inherent frequency limitations. For example, when sound spreads through structures like narrow tubes, annular slits or over sharp corners, noticeable thermal and viscous effects take place causing further departure from the lumped parameter model. The new standard for the 3D model has been developed to give proper consideration to these effects. We worked with the National Freeform Centre, experts in measuring items that are unconventional in shape or design, to develop the new standard – which will now help manufacturers develop better products."

The National Physical Laboratory

The National Physical Laboratory (NPL) in Teddington is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

NPL provides companies with access to world leading support and technical expertise, inspiring the absolute confidence required to realise competitive advantage from new materials, techniques and technologies.

NPL expertise and services are crucial in a wide range of social applications - helping to save lives, protect the environment and enable citizens to feel safe and secure. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all.

NPL develops and maintains the nation's primary measurement standards, supporting an infrastructure of traceable measurement throughout the UK and the world, to ensure accuracy and consistency.

The National Freeform Centre at NPL

The National Freeform Centre at NPL supports UK end-users, manufacturers and academics in freeform measurement by providing evaluation and traceability for CMMs with tactile and non-contact probes, laser scanners, articulated arms, fringe projection systems, and point cloud processing software. Examples of the gains potentially achievable with suitable advances in freeform manufacture include efficiency of aero engines, drag reduction for automotive bodies and increased life span of prosthetics.

Efficiency of aero engines, drag reduction for automotive bodies and increased life span of prosthetics are just some examples of the gains potentially achievable with suitable advances in freeform manufacture. However, such advances are partly limited by poor metrology infrastructure, lack of measurement traceability and absence of specialised facilities and knowledge base.

Joe Meaney | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>