Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurement scientists set a new standard in 3-D ears

13.10.2010
'HATS' off to the National Physical Laboratory for innovation in sound measurement

Scientists at the UK's National Physical Laboratory (NPL) have developed a means of representing a 3D model ear, to help redefine the standard for a pinna simulator (the pinna is the outer part of the ear) – used to measure sound in the way we perceive it.

The nature of human hearing is heavily dependent on the shape of the head and torso, and their interaction with sound reaching the ears allows for the perception of location within a 3D sound field.

Head and Torso Simulators (HATS) are designed to model this behaviour, enabling measurements and recordings to be made taking account of the Head Related Transfer Function (HRTF) - the difference between a sound in free air and the sound as it arrives at the eardrum.

HATS are mannequins with built-in calibrated ear simulators (and sometimes mouth simulators), that provide realistic reproduction of the acoustic properties of an average adult human head and torso. They are ideal for performing in-situ electro-acoustic tests on, telephone handsets (including mobile and cordless), headsets, audio conference devices, microphones, headphones, hearing aids and hearing protectors.

Critically the shape of the pinna has a large effect on the behaviour, and as a result it is defined for HATS by its own standard (IEC TR 60959:1990) to provide consistency across measurements. However, this standard defines the shape of the pinna through a series of 2D cross-sectional profiles. This form of specification and definition has on occasion proven to be an inadequate guide for manufacturing processes.

As part of a revision of this standard, the Acoustics Team at NPL teamed up with the National Freeform Centre in a novel move to redefine the standard through an on-line 3D CAD specification. A model ear was measured using a coordinate-measuring machine with laser scanner to produce a 3D scan of the ear, which can then be used to provide manufacturers with a more practical specification for reproduction and a standard that is easily comparable with similar non-contact freeform measurement techniques.

Ian Butterworth from NPL, said:

"Having a 2D pinna in an artificial ear has some inherent frequency limitations. For example, when sound spreads through structures like narrow tubes, annular slits or over sharp corners, noticeable thermal and viscous effects take place causing further departure from the lumped parameter model. The new standard for the 3D model has been developed to give proper consideration to these effects. We worked with the National Freeform Centre, experts in measuring items that are unconventional in shape or design, to develop the new standard – which will now help manufacturers develop better products."

The National Physical Laboratory

The National Physical Laboratory (NPL) in Teddington is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

NPL provides companies with access to world leading support and technical expertise, inspiring the absolute confidence required to realise competitive advantage from new materials, techniques and technologies.

NPL expertise and services are crucial in a wide range of social applications - helping to save lives, protect the environment and enable citizens to feel safe and secure. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all.

NPL develops and maintains the nation's primary measurement standards, supporting an infrastructure of traceable measurement throughout the UK and the world, to ensure accuracy and consistency.

The National Freeform Centre at NPL

The National Freeform Centre at NPL supports UK end-users, manufacturers and academics in freeform measurement by providing evaluation and traceability for CMMs with tactile and non-contact probes, laser scanners, articulated arms, fringe projection systems, and point cloud processing software. Examples of the gains potentially achievable with suitable advances in freeform manufacture include efficiency of aero engines, drag reduction for automotive bodies and increased life span of prosthetics.

Efficiency of aero engines, drag reduction for automotive bodies and increased life span of prosthetics are just some examples of the gains potentially achievable with suitable advances in freeform manufacture. However, such advances are partly limited by poor metrology infrastructure, lack of measurement traceability and absence of specialised facilities and knowledge base.

Joe Meaney | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>