Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First measurement of the age of cometary material

26.02.2010
Though comets are thought to be some of the oldest, most primitive bodies in the solar system, new research on comet Wild 2 indicates that inner solar system material was transported to the comet-forming region at least 1.7 million years after the formation of the oldest solar system solids.

The research by Lawrence Livermore National Laboratory scientists and colleagues provides the first constraint on the age of cometary material from a known comet. The findings are published in the Feb. 25 edition of Science Express.

The NASA Stardust mission to comet Wild 2, which launched in 1999, was designed around the premise that comets preserve pristine remnants of materials that helped form the solar system. In 2006, Stardust returned with the first samples from a comet.

Though the mission was expected to provide a unique glimpse into the early solar system by returning a mix of solar system condensates, amorphous grains from the interstellar medium and true stardust (crystalline grains originating in distant stars), the initial results painted a different picture. Instead, the comet materials consisted of high-temperature materials including calcium-aluminum rich inclusions (CAIs), the oldest objects formed in the solar nebula. These objects form in the inner regions of the solar nebula and are common in meteorites.

The presence of CAIs in comet Wild 2 indicates that the formation of the solar system included mixing over radial distances much greater than has been recognized by scientists in the past.

“The inner solar system material in Wild 2 underscores the importance of radial transport of material over large distances in the early solar nebula,” said lead author Jennifer Matzel of the Laboratory‘s Institute of Geophysics and Planetary Science and the Glenn T. Seaborg Institute. “These findings also raise key questions regarding the timescale of the formation of comets and the relationship between Wild 2 and other primitive solar nebula objects.” Analysis showed that the inner solar system materials formed 1.7 million years after the onset of CAI formation.

Other LLNL team members include Hope Ishii, Ian Hutcheon, John Bradley, Peter Weber and Nick Teslich. Colleagues include scientists from the University of Washington, University of California, Los Angeles and the Smithsonian Institution.

Founded in 1952, Lawrence Livermore National Laboratory (www.llnl.gov) is a national security laboratory that develops science and engineering technology and provides innovative solutions to our nation's most important challenges. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>