Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Max Planck Princeton Partnership in fusion research

30.03.2012
The Max Planck Society is strengthening its commitment to the development of a sustainable energy supply and has joined forces with internationally renowned Princeton University to establish the Max Planck Princeton Research Center for Plasma Physics.
Shirley M. Tilghman, the President of Princeton University, and Peter Gruss, President of the Max Planck Society, signed the agreement for the establishment of the new research Center at Princeton University campus on March 29, 2012. On that occasion Peter Gruss stressed: ”It is essential that we pool our strengths and knowledge in the field of fusion research, in particular, so that we can develop nuclear fusion into something the world urgently needs for the years and decades to come: safe, clean and dependable energy technology.”

The new Center’s partners in the field of fusion research are the Max Planck Institute for Plasma Physics in Garching and Greifswald (IPP) and the Princeton Plasma Physics Laboratory (PPPL). In the field of astrophysical plasmas, the MPI for Solar System Research (Katlenburg-Lindau), the MPI for Astrophysics (Garching) and Princeton University’s Department for Astrophysical Sciences are also involved.
“The aim of the cooperation is to make greater use of the synergies between fusion research and the work carried out by the astrophysicists,” explains Sibylle Günter, Director of the MPI for Plasma Physics. For example, it has emerged that many methods developed by fusion research are also applicable for astrophysics. It is also intended to apply insights into fusion and astrophysical plasmas to the further development of theoretical models, and thereby advance the research on fusion power as an energy source suitable for practical, everyday use.

Sibylle Günter from the MPI for Plasma Physics, Stewart Prager from the PPPL and Jim Stone from the Department for Astrophysical Sciences form the Leading Team of the Max Planck Princeton Center. Also involved are the IPP directors Per Helander and Thomas Klinger, Sami Solanki from the Max Planck Institute for Solar System Research and Simon White from the Max Planck Institute for Astrophysics.

All of the partners on both the German and American sides have extensive experience in the fields of fusion research and astrophysics, and complement each other in different ways. The IPP is working on a Tokamak experiment in Garching, which is based on the design of the international experimental fusion reactor ITER. The IPP researchers are also building the Wendelstein 7-X Stellarator in Greifswald, and the PPPL has already contributed hardware for this project. Given that the PPPL is very interested in stellarator physics but is not carrying out an experiment of its own in this area, Günter assumes that this cooperation will intensify further with the establishment of the new Center. The PPPL, which is the leading institute in the field of fusion research in the US, operates a spherical Tokamak and carries out laboratory experiments on general plasma physics, a topic that is also researched in Greifswald. The partners from the Max Planck Society and Princeton University would like to avail of their respective experimental systems and develop new theoretical models and codes in the context of the new Center.

The Max Planck Princeton Research Center for Plasma Physics will promote the exchange of scientists, in particular junior scientists. To this effect, the scientists could cooperate on an experiment campaign at the corresponding other institute or work jointly on the development of computer programs.

The new Center is one of ten Max Planck Centers that are currently being established at nine locations throughout the world.

Michael Frewin | Max-Planck-Gesellschaft
Further information:
http://www.mpg.de/5562635/Max_Planck_Princeton_Partnership_fusion_research

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>