Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Max Planck Princeton Partnership in fusion research

The Max Planck Society is strengthening its commitment to the development of a sustainable energy supply and has joined forces with internationally renowned Princeton University to establish the Max Planck Princeton Research Center for Plasma Physics.
Shirley M. Tilghman, the President of Princeton University, and Peter Gruss, President of the Max Planck Society, signed the agreement for the establishment of the new research Center at Princeton University campus on March 29, 2012. On that occasion Peter Gruss stressed: ”It is essential that we pool our strengths and knowledge in the field of fusion research, in particular, so that we can develop nuclear fusion into something the world urgently needs for the years and decades to come: safe, clean and dependable energy technology.”

The new Center’s partners in the field of fusion research are the Max Planck Institute for Plasma Physics in Garching and Greifswald (IPP) and the Princeton Plasma Physics Laboratory (PPPL). In the field of astrophysical plasmas, the MPI for Solar System Research (Katlenburg-Lindau), the MPI for Astrophysics (Garching) and Princeton University’s Department for Astrophysical Sciences are also involved.
“The aim of the cooperation is to make greater use of the synergies between fusion research and the work carried out by the astrophysicists,” explains Sibylle Günter, Director of the MPI for Plasma Physics. For example, it has emerged that many methods developed by fusion research are also applicable for astrophysics. It is also intended to apply insights into fusion and astrophysical plasmas to the further development of theoretical models, and thereby advance the research on fusion power as an energy source suitable for practical, everyday use.

Sibylle Günter from the MPI for Plasma Physics, Stewart Prager from the PPPL and Jim Stone from the Department for Astrophysical Sciences form the Leading Team of the Max Planck Princeton Center. Also involved are the IPP directors Per Helander and Thomas Klinger, Sami Solanki from the Max Planck Institute for Solar System Research and Simon White from the Max Planck Institute for Astrophysics.

All of the partners on both the German and American sides have extensive experience in the fields of fusion research and astrophysics, and complement each other in different ways. The IPP is working on a Tokamak experiment in Garching, which is based on the design of the international experimental fusion reactor ITER. The IPP researchers are also building the Wendelstein 7-X Stellarator in Greifswald, and the PPPL has already contributed hardware for this project. Given that the PPPL is very interested in stellarator physics but is not carrying out an experiment of its own in this area, Günter assumes that this cooperation will intensify further with the establishment of the new Center. The PPPL, which is the leading institute in the field of fusion research in the US, operates a spherical Tokamak and carries out laboratory experiments on general plasma physics, a topic that is also researched in Greifswald. The partners from the Max Planck Society and Princeton University would like to avail of their respective experimental systems and develop new theoretical models and codes in the context of the new Center.

The Max Planck Princeton Research Center for Plasma Physics will promote the exchange of scientists, in particular junior scientists. To this effect, the scientists could cooperate on an experiment campaign at the corresponding other institute or work jointly on the development of computer programs.

The new Center is one of ten Max Planck Centers that are currently being established at nine locations throughout the world.

Michael Frewin | Max-Planck-Gesellschaft
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>