Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Matter-matter entanglement at a distance

27.05.2011
Scientists at the Max Planck Institute of Quantum Optics prepare quantum mechanical entanglement of two remote quantum systems.

Because of its strange consequences the quantum mechanical phenomenon of entanglement has been called “spooky action at a distance” by Albert Einstein. For several years physicists have been developing concepts how to use this phenomenon for practical applications such as absolutely safe data transmission. For this purpose, the entanglement which is generated in a local process has to be distributed among remote quantum systems.

A team of scientists around Prof. Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics and head of the Quantum Dynamics Division, has now demonstrated that two remote atomic quantum systems can be prepared in a shared “entangled” state (Physical Review Letters, Advance Online Publication, 26 May 2011): one system is a single atom trapped in an optical resonator, the other one a Bose-Einstein condensate consisting of hundreds of thousands of ultracold atoms. With the hybrid system thus generated, the researchers have realized a fundamental building block of a quantum network.

In the quantum mechanical phenomenon of “entanglement” two quantum systems are coupled in such a way that their properties become strictly correlated. This requires the particles to be in close contact. For many applications in a quantum network, however, it is necessary that entanglement is shared between two remote nodes (“stationary” quantum bits). One way to achieve this is to use photons (“flying” quantum bits) for transporting the entanglement. This is somewhat analogous to classical telecommunication, were light is used to transmit information between computers or telephones. In the case of a quantum network, however, this task is much more difficult as entangled quantum states are extremely fragile and can only survive if the particles are well isolated from their environment.

The team of Professor Rempe has now taken this hurdle by preparing two atomic quantum systems located in two different laboratories in an entangled state: on the one hand a single rubidium atom trapped inside an optical resonator formed by two highly reflective mirrors, on the other hand an ensemble of hundreds of thousands of ultracold rubidium atoms which form a Bose Einstein condensate (BEC). In a BEC, all particles have the same quantum properties so that they all act as a single “superatom”.

First, a laser pulse stimulates the single atom to emit a single photon. In this process, internal degrees of freedom of the atom are coupled to the polarisation of the photon, so that both particles become entangled. The photon is transported through a 30 m long optical fibre into a neighbouring laboratory where it is directed to the BEC. There, it is absorbed by the whole ensemble. This process converts the photon into a collective excitation of the BEC. “The exchange of quantum information between photons and atomic quantum systems requires a strong light-matter interaction”, explains Matthias Lettner, a doctoral student working on the experiment. “For the single atom, we achieve this by multiple reflections between the two resonator mirrors, whereas for the BEC the light-matter interaction is enhanced by the large number of atoms.”

In a subsequent step, the physicists prove that the single atom and the BEC are really entangled. To this end, the photon absorbed in the BEC is retrieved with the help of a laser pulse and the state of the single atom is read out by generating a second photon. The entanglement of the two photons reaches 95 % of the maximally possible value, thus showing that the entanglement of the two atomic quantum systems must have been equally good, or even better. Moreover, the entanglement is detectable for approximately 100 microseconds.

“A BEC is very well suited as a quantum memory because this exotic state does not suffer from any disturbances caused by thermal motion”, says Matthias Lettner. “This makes it possible to store and retrieve quantum information with high efficiency and to conserve this state for a long time.”

In this experiment, the team of Professor Rempe has realized a building block for a quantum network consisting of two remote, entangled, stationary nodes. This is a milestone on the way to large-scale quantum networks in which, for example, quantum information can be transmitted absolutely safe. In addition, such networks might help realizing a universal quantum computer in which quantum bits can be exchanged with photons between nodes designed for information storage and processing.

Original publication:

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe
“Remote Entanglement between a Single Atom and a Bose-Einstein Condensate”
Physical Review Letters, Advance Online Publication, 26 May 2011
Contact:
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
e-mail: gerhard.rempe@mpq.mpg.de
Matthias Lettner
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 245
e-mail: matthias.lettner@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
Phone: +49 89 32905 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>