Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When matter and antimatter collide

27.12.2010
Antimatter, a substance that often features in science fiction, is routinely created at the CERN particle physics laboratory in Geneva, Switzerland, to provide us with a better understanding of atoms and molecules.

Now, RIKEN scientists, as part of a collaborative team with researchers from Denmark, Japan, the United Kingdom and Hungary, have shown that antiprotons—particles with the same mass as a proton but negatively charged—collide with molecules in a very different way from their interaction with atoms1. The result sets an important benchmark for testing future atomic-collision theories.

RIKEN scientist Yasunori Yamazaki explains that to assess such collisions: “We shot the simplest negatively charged particles, slow antiprotons, at the simplest molecular target, molecular hydrogen.” Slow antiprotons are a unique probe of atoms and molecules because their negative charge does not attract electrons—thereby simplifying theoretical modelling. Further, slower projectile speeds mean longer-lasting, stronger interactions and avoid the need for complicated relativistic calculations.

The scientists at CERN created antiprotons by firing a beam of high-speed protons into a block of the metal iridium. Then, in a facility known as the Antiproton Decelerator, they used magnets to focus the antiprotons before applying strong electric fields to slow them down to approximately 10% of the speed of light. Yamazaki and his colleagues trapped and cooled these antiprotons to 0.01% of the velocity of light before accelerating them one by one to the desired velocity (Fig. 1). They then slammed antiprotons into a gas of molecular deuterium—a pair of bound hydrogen atoms each with a nucleus comprising one proton and one neutron—and used sensitive equipment to detect the remnants of the collision.

Yamazaki and the team found that the likelihood of the ionization of the deuterium molecules scales linearly with the antiproton velocity. This is contrary to what is expected for the atomic target, hydrogen. “This was a big surprise, and it infers that our understanding of atomic collision dynamics, even at a qualitative level, is still in its infancy,” says Yamazaki. The team suggests that molecular targets provide a mechanism for suppressing the ionization process. As an antiproton approaches one of the protons in the molecule, the presence of the second proton shifts the orbiting electron cloud. The slower the antiproton, the more time the electron has to adjust, and hence the smaller the chance of ionization.

The team now hopes to investigate how ionization depends on the antiproton–target distance and the orientation at the moment of collision.

The corresponding author for this highlight is based at the Atomic Physics Laboratory, RIKEN Advanced Science Institute.

Journal information

Knudsen, H., Torii, H.A., Charlton, M., Enomoto, Y., Georgescu, I., Hunniford, C.A., Kim, C.H., Kanai, Y., Kristiansen, H.-P.E., Kuroda, N., et al. Target structure induced suppression of the ionization cross section for very low energy antiproton–hydrogen collisions. Physical Review Letters 105, 213201 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>