Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material for quantum computing discovered out of the blue

28.10.2013
A common blue pigment used in the £5 note could have an important role to play in the development of a quantum computer, according to a paper published today in the journal Nature.

The pigment, copper phthalocyanine (CuPc), which is similar to the light harvesting section of the chlorophyll molecule, is a low-cost organic semiconductor that is found in many household products.

Crucially, it can be processed into a thin film that can be readily used for device fabrication, a significant advantage over similar materials that have been studied previously.

Now, researchers from the London Centre for Nanotechnology at UCL and the University of British Columbia have shown that the electrons in CuPc can remain in 'superposition' – an intrinsically quantum effect where the electron exists in two states at once - for surprisingly long times, showing this simple dye molecule has potential as a medium for quantum technologies.

The development of quantum computing requires precise control of tiny individual "qubits", the quantum analogs of the classical binary bits, '0' and '1', which underpin all of our computation and communications technologies today. What distinguishes the "qubits" from classical bits is their ability to exist in superposition states.

The decay time of such superpositions tells us how useful a candidate qubit could be in quantum technologies. If this time is long, quantum data storage, manipulation and transmission become possible.

Lead author Marc Warner from the London Centre for Nanotechnology, said: "In theory, a quantum computer can easily solve problems that a normal, classical, computer would not be able to answer in the lifetime of the universe. We just don't know how to build one yet.

"Our research shows that a common blue dye has more potential for quantum computing than many of the more exotic molecules that have been considered previously."

CuPc possesses many other attributes that could exploit the spin of electrons, rather than their charge, to store and process information which are highly desirable in a more conventional quantum technology. For example, the pigment strongly absorbs visible light and is easy to modify chemically and physically, so its magnetic and electrical properties can be controlled.

Dr Warner added: "The properties of copper phthalocyanine make it of interest for the emerging field of quantum engineering, which seeks to exploit the quantum properties of matter to perform tasks like information processing or sensing more effectively than has ever been possible."

Notes for editors

1. For more information or to speak to Dr Marc Warner, please contact Clare Ryan in the UCL Media Relations Office on tel: +44 (0)20 3108 3846, mobile: +44 07747 556 056, out of hours +44 (0)7917 271 364, e-mail: clare.ryan@ucl.ac.uk

2. 'Potential for Spin-Based Information Processing in Metallo-Organic Semiconductors', DOI: 10.1038/nature12597, is published online today in Nature. For copies of the paper please contact UCL Media Relations.

3. An image illustrating the research is available to journalists on request from UCL Media Relations. Caption: Phthalocyanine thin film on a flexible plastic substrate, showing the coexistence of long-lived "0" and "1" qubits on the copper spin. The molecules form a regular array together with the metal-free analogues, and the background represents the lattice fringes of the molecular crystals obtained by transmission electron microscopy."

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine.

We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world.

UCL has nearly 27,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million.

Clare Ryan | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>