Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material for quantum computing discovered out of the blue

28.10.2013
A common blue pigment used in the £5 note could have an important role to play in the development of a quantum computer, according to a paper published today in the journal Nature.

The pigment, copper phthalocyanine (CuPc), which is similar to the light harvesting section of the chlorophyll molecule, is a low-cost organic semiconductor that is found in many household products.

Crucially, it can be processed into a thin film that can be readily used for device fabrication, a significant advantage over similar materials that have been studied previously.

Now, researchers from the London Centre for Nanotechnology at UCL and the University of British Columbia have shown that the electrons in CuPc can remain in 'superposition' – an intrinsically quantum effect where the electron exists in two states at once - for surprisingly long times, showing this simple dye molecule has potential as a medium for quantum technologies.

The development of quantum computing requires precise control of tiny individual "qubits", the quantum analogs of the classical binary bits, '0' and '1', which underpin all of our computation and communications technologies today. What distinguishes the "qubits" from classical bits is their ability to exist in superposition states.

The decay time of such superpositions tells us how useful a candidate qubit could be in quantum technologies. If this time is long, quantum data storage, manipulation and transmission become possible.

Lead author Marc Warner from the London Centre for Nanotechnology, said: "In theory, a quantum computer can easily solve problems that a normal, classical, computer would not be able to answer in the lifetime of the universe. We just don't know how to build one yet.

"Our research shows that a common blue dye has more potential for quantum computing than many of the more exotic molecules that have been considered previously."

CuPc possesses many other attributes that could exploit the spin of electrons, rather than their charge, to store and process information which are highly desirable in a more conventional quantum technology. For example, the pigment strongly absorbs visible light and is easy to modify chemically and physically, so its magnetic and electrical properties can be controlled.

Dr Warner added: "The properties of copper phthalocyanine make it of interest for the emerging field of quantum engineering, which seeks to exploit the quantum properties of matter to perform tasks like information processing or sensing more effectively than has ever been possible."

Notes for editors

1. For more information or to speak to Dr Marc Warner, please contact Clare Ryan in the UCL Media Relations Office on tel: +44 (0)20 3108 3846, mobile: +44 07747 556 056, out of hours +44 (0)7917 271 364, e-mail: clare.ryan@ucl.ac.uk

2. 'Potential for Spin-Based Information Processing in Metallo-Organic Semiconductors', DOI: 10.1038/nature12597, is published online today in Nature. For copies of the paper please contact UCL Media Relations.

3. An image illustrating the research is available to journalists on request from UCL Media Relations. Caption: Phthalocyanine thin film on a flexible plastic substrate, showing the coexistence of long-lived "0" and "1" qubits on the copper spin. The molecules form a regular array together with the metal-free analogues, and the background represents the lattice fringes of the molecular crystals obtained by transmission electron microscopy."

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine.

We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world.

UCL has nearly 27,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million.

Clare Ryan | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>